Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries

2017 ◽  
Vol 19 (38) ◽  
pp. 25905-25918 ◽  
Author(s):  
Florian Holtstiege ◽  
Andrea Wilken ◽  
Martin Winter ◽  
Tobias Placke

Active lithium loss (ALL) resulting in a capacity loss (QALL), which is caused by lithium consuming parasitic reactions like SEI formation, is a major reason for capacity fading and, thus, for a reduction of the usable energy density of lithium-ion batteries (LIBs).

2018 ◽  
Vol 47 (20) ◽  
pp. 7020-7028 ◽  
Author(s):  
Jirong Mou ◽  
Yunlong Deng ◽  
Zhicui Song ◽  
Qiaoji Zheng ◽  
Kwok Ho Lam ◽  
...  

High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte.


Author(s):  
Linghong Zhang ◽  
Sookyung Jeong ◽  
Nathan Reinsma ◽  
Kerui Sun ◽  
Derrick S Maxwell ◽  
...  

Abstract Compared to the graphite anode, Si and SiOx-containing anodes usually have a larger initial capacity loss (ICL) due to more parasitic reactions. The higher ICL of the anode can cause significant Li inventory loss in a full cell, leading to a compromised energy density. As one way to mitigate such Li inventory loss, Li2O2 can be used as the cathode prelithiation additive to provide additional lithium. However, an additional catalyst is usually needed to lower its decomposition potential. In this work, we investigate the use of Li2O2 as the cathode prelithiation additive without the addition of a catalyst. Li2O2 decomposition is first demonstrated in coin half-cells with a calculated capacity of 1180 mAh/g obtained from Li2O2 decomposition. We then further demonstrate successful Li2O2 decomposition in single-layer pouch (SLP) full cells and evaluate the initial electrochemical performance. Despite its moisture sensitivity, Li2O2 showed reasonable compatibility with dry-room handling. After dry-room handling, Li2O2 decomposition was observed with an onset potential of 4.29 V vs. SiOx anode in SLP cells. With Li2O2 addition, the utilization of the Li inventory from cathode active material was improved by 12.9%, and discharge DCR has reduced by 7% while the cells still deliver similar cell capacities.


2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


Author(s):  
Zhiyong Li ◽  
Rui Sun ◽  
Zhaoxia Qin ◽  
Xinlong Liu ◽  
Caihong Wang ◽  
...  

Investigation on rechargeable potassium-ion batteries (PIBs) has been revitalized owing to the unique characteristics of abundant reserves and comparable energy density over lithium-ion batteries (LIBs), which holds huge potential for...


2021 ◽  
Vol 490 ◽  
pp. 229527
Author(s):  
Min Wang ◽  
Wentao Yao ◽  
Peichao Zou ◽  
Shengyu Hu ◽  
Haojie Zhu ◽  
...  

2017 ◽  
Vol 5 (25) ◽  
pp. 13161-13167 ◽  
Author(s):  
Jennifer Heath ◽  
Hungru Chen ◽  
M. Saiful Islam

Developing rechargeable magnesium batteries has become an area of growing interest as an alternative to lithium-ion batteries largely due to their potential to offer increased energy density from the divalent charge of the Mg ion.


Sign in / Sign up

Export Citation Format

Share Document