electrolyte composition
Recently Published Documents


TOTAL DOCUMENTS

633
(FIVE YEARS 115)

H-INDEX

48
(FIVE YEARS 6)

2021 ◽  
Vol 14 (1) ◽  
pp. 323
Author(s):  
Mohamed Gaber Moustafa ◽  
Abdelaziz Mohamed Aboraia ◽  
Vera Butova ◽  
Alexander Guda ◽  
Fatma Elmasry ◽  
...  

The optimization of the electrolyte composition for a canonical cathode such as LiCoPO4 olivine. The implemented succinic anhydride within a liquid electrolyte LiPF6 and dissolved in carbonate/diethyl considerably improves the discharge capacity of the electrode are shown. The introduction of succinic anhydride into the solid/electrolyte interphase (SEI) layer is responsible for the improved electrochemical performance of the electrode. We used LiCoPO4@C-ZrO2 as a cathode to prove the concept. The observed results could be applied for a wide range of cathodes. Moreover, the proposed additive to the electrolyte could help evaluate the performance of the materials without the side effects of the electrolyte.


2021 ◽  
Vol 400 (1) ◽  
pp. 2100194
Author(s):  
Balaji S. Salokhe ◽  
Madhuri D. Gonugade ◽  
Suraj M. More ◽  
Pradip A. Bobhate ◽  
Rutuja N. Gurav ◽  
...  

2021 ◽  
Vol 105 (1) ◽  
pp. 97-105
Author(s):  
Michal Carda ◽  
Nela Adamová ◽  
Daniel Budáč ◽  
Martin Paidar ◽  
Karel Bouzek

Electrolytes utilized in solid oxide cells (SOCs) are based on oxide ion-conductive ceramic materials. The conductivity occurs via oxygen vacancies in the crystal lattice, which are created by the introduction of dopant into the material. Fast and simple preparation of electrolytes using variable dopant content is of great importance for SOCs development. ZrO2 doped by Y2O3 (YSZ) is still considered to be a state-of-the-art material due to its conductivity and thermomechanical compatibility with electrodes. Therefore, a detailed procedure to fabricate YSZ electrolytes with desired dopant content is of significant importance. Each prepared electrolyte was examined by means of spectroscopic methods in combination with electrochemical ones. The results obtained allows to understand connection between electrolyte composition and structural properties.


2021 ◽  
Vol 105 (1) ◽  
pp. 199-207
Author(s):  
Yurii V. Shmatok ◽  
Vitalii A. Sirosh ◽  
Nataliya I. Globa

The paper presents the results of the investigations of structural, morphological and electrochemical characteristics of Na x MnO2 (x = 0.44, 0.67 and 0.8) .It is shown that the crystal structure of the resulting materials is determined by the sodium content and is tunnel in a case of Na0.44MnO2 and layered in a case of Na0.67MnO2 and Na0.8MnO2. In addition, the materials obtained are characterized by different morphology. The initial discharge capacity of the materials obtained increases with the increase of sodium content in oxide phase and is 117, 139 and 151 mAh/g for Na0.44MnO2, Na0.67MnO2 and Na0.8MnO2, respectively, however, at the same time the stability of the specific capacity decreases. Using Na0.44MnO2 as an example, the effect of the electrolyte composition, in particular the presence of FEC, on its electrochemical characteristics is shown.


2021 ◽  
Vol 87 (10) ◽  
pp. 34-39
Author(s):  
T. I. Devyatkina ◽  
E. S. Belyaev ◽  
V. V. Rogozhin ◽  
M. V. Maksimov

Aluminum alloys with electroplated coatings and copper plated in particular gained multiple applications. However, pre-zincate treatment often fails to provide the desired adhesion of the coating. We present the results of studying the effect of the electrolyte composition on the adhesion and other properties of the coating-base system. It is shown that an electrolyte with a reduced content of sulfuric and phosphoric acids can be used for anodizing and the oxide films formed during anodizing are stable in the usual copper-plating sulfuric acid electrolyte which eliminates contact exchange and increases adhesion. The use of a modern scratch-test method provides numerical determination of the values of adhesion of copper coatings. The adhesion value depends on the surface porosity of the oxide film and on the type of anodized alloys. The results can be used to improve the technology of applying copper coatings, both as an independent coating and as an underlayer in multilayer coatings.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 67
Author(s):  
Sanaz Momeni Boroujeni ◽  
Alexander Fill ◽  
Alexander Ridder ◽  
Kai Peter Birke

Lithium metal anodes have again attracted widespread attention due to the continuously growing demand of cells with higher energy density. However, the lithium deposition mechanism and the affecting process of influencing factors, such as temperature, cycling current density, and electrolyte composition are not fully understood and require further investigation. In this article, the behavior of lithium metal anode at different temperatures (25, 40, and 60 ∘C), lithium salts, electrolyte concentrations (1 and 2 M), and the applied cell current (equivalent to 0.5 C, 1 C, and 2 C). is investigated. Two different salts were evaluated: lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethanesul-fonyl)imide (LiTFSI). The cells at a medium temperature (40 ∘C) show the highest Coulombic efficiency (CE). However, shorter cycle life is observed compared to the experiments at room temperature (25 ∘C). Regardless of electrolyte type and C-rate, the higher temperature of 60 ∘C provides the worst Coulombic efficiency and cycle life among those at the examined temperatures. A higher C-rate has a positive effect on the stability over the cycle life of the lithium cells. The best performance in terms of long cycle life and relatively good Coulombic efficiency is achieved by fast charging the cell with high concentration LiFSI in 1,2-dimethoxyethane (DME) electrolyte at a temperature of 25 ∘C. The cell has an average Coulombic efficiency of 0.987 over 223 cycles. In addition to galvanostatic experiments, Electrochemical Impedance Spectroscopy (EIS) measurements were performed to study the evolution of the interface under different conditions during cycling.


2021 ◽  
Vol 22 (3) ◽  
pp. 53-60
Author(s):  
A. V. Evseev ◽  
A. O. Girsh ◽  
S. S. Stepanov ◽  
M. M. Stukanov ◽  
R. V. Eselevich ◽  
...  

The paper presents that the use of Ringer’s solution in the program of perioperative infusion therapy, compared with the use of an isotonic sterofundin solution, causes statistically significant adverse changes in the parameters of hemostasis, acid-base state and electrolyte composition, with the exception of potassium and sodium, venous blood. Also, the correlation analysis confirmed the relationship of significant adverse changes in the parameters of hemostasis, acid-base state and electrolyte composition of venous blood in patients when using Ringer’s solution in the perioperative infusion therapy program.


Sign in / Sign up

Export Citation Format

Share Document