Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions

2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.

2020 ◽  
Vol 49 (23) ◽  
pp. 8790-8839
Author(s):  
Yun Zheng ◽  
Yuze Yao ◽  
Jiahua Ou ◽  
Matthew Li ◽  
Dan Luo ◽  
...  

All-solid-state lithium ion batteries (ASSLBs) are considered next-generation devices for energy storage due to their advantages in safety and potentially high energy density.


Author(s):  
Changhong Wang ◽  
jianwen liang ◽  
Yang Zhao ◽  
Matthew Zheng ◽  
Xiaona Li ◽  
...  

Sulfide electrolyte (SE)-based all-state-state lithium batteries (ASSLBs) have gained worldwide attention because of their great safety and higher energy density over conventional lithium-ion batteries (LIBs). However, poor air stability of...


2019 ◽  
Vol 31 (29) ◽  
pp. 1900376 ◽  
Author(s):  
Hyomyung Lee ◽  
Pilgun Oh ◽  
Junhyeok Kim ◽  
Hyungyeon Cha ◽  
Sujong Chae ◽  
...  

2019 ◽  
Vol 7 (21) ◽  
pp. 13120-13129 ◽  
Author(s):  
Min Chen ◽  
Xiaojing Jin ◽  
Zhi Chen ◽  
Yaotang Zhong ◽  
Youhao Liao ◽  
...  

Cross-like hierarchical porous Li1.167Mn0.583Ni0.250O2 with (110)-oriented crystal planes (CHP-LMNO) is successfully developed by a morphology-conserved solid-state Li implantation method.


Author(s):  
Kevin Westhoff ◽  
Todd M. Bandhauer

The high thermal conduction resistances of lithium-ion batteries severely limits the effectiveness of conventional external thermal management systems. To remove heat from the insulated interior portions of the cell, a large temperature difference is required across the cell, and the center of the electrode stack can exceed the thermal runaway onset temperature even under normal cycling conditions. One potential solution is to remove heat locally inside the cell by evaporating a volatile component of the electrolyte. In this system, a high vapor pressure co-solvent evaporates at a low temperature prior to triggering thermal runaway. The vapor generated is transported to the skin of the cell, where it is condensed and transported back to the internal portion of the cell via surface tension forces. For this system to function, a co-solvent that has a boiling point below the thermal runaway onset temperature must also allow the cell to function under normal operating conditions. Low boiling point hydrofluoroethers (HFE) were first used by Arai to reduce LIB electrolyte flash points, and have been proven to be compatible with LIB chemistry. In the present study, HFE-7000 and ethyl methyl carbonate (EMC) 1:1 by volume are used to solvate 1.0 M LiTFSI to produce a candidate electrolyte for the proposed cooling system. Copper antimonide (Cu2Sb) and lithium iron phosphate (LiFePO4) are used in a full cell architecture with the candidate electrolyte in a custom electrolyte boiling facility. The facility enables direct viewing of the vapor generation within the full cell and characterizes the galvanostatic electrochemical performance. Test results show that the LFP/Cu2Sb cell is capable of operation even when a portion of the more volatile HFE-7000 is continuously evaporated.


Author(s):  
Tao Yu ◽  
Bingyu Ke ◽  
Haoyu Li ◽  
Shaohua Guo ◽  
Haoshen Zhou

All solid-state batteries (ASSBs) have gained extensive attention due to the improved safety, and high specific energy density compared with conventional liquid lithium-ion batteries. As the key component of ASSBs,...


2018 ◽  
Vol 6 (25) ◽  
pp. 11631-11663 ◽  
Author(s):  
Shimou Chen ◽  
Kaihua Wen ◽  
Juntian Fan ◽  
Yoshio Bando ◽  
Dmitri Golberg

Recent progress in designing electrolytes for high-voltage lithium-ion batteries and solid-state lithium batteries is summarized.


2020 ◽  
Vol MA2020-01 (1) ◽  
pp. 109-109
Author(s):  
Thi Thu Dieu Nguyen ◽  
Sara Abada ◽  
Amandine Lecocq ◽  
Julien Bernard ◽  
Martin Petit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document