Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids

Lab on a Chip ◽  
2017 ◽  
Vol 17 (23) ◽  
pp. 4031-4039 ◽  
Author(s):  
Wonkyoung Kim ◽  
Changho Lee ◽  
Chulhong Kim ◽  
Dong Sung Kim

An optofluidic lens serves as a highly reconfigurable device to manipulate light by using a smoothly curved interface between immiscible liquids.

Author(s):  
Arindam Kushagra ◽  
Akshaya Pandey ◽  
Ayanava Giri ◽  
Diyasa Bazal ◽  
Anup Kumar Pradhan ◽  
...  

In this article, we report the generation of alternating current by application of constant and ramping DC voltages across oil-water interfaces. The work reported here can be broadly divided into two parts depending on the shapes of oil-water interfaces i.e. flattened and curved. In the first part, an alternating current of ~100 nA (amplitude)was generated by applying a constant DC voltage of -3V& above across a free standing and flattened oil-water interface.In another part, an alternating current of ~150 nA (amplitude) was generated by applying a ramping up DC voltage starting from -5V to 5V, then again ramping back down to -5V for the free standing and curved interface. The suggested qualitative mechanism that engenders such a phenomenon includes the oil-water interface acting like a membrane. This membrane oscillates due to the electrophoretic movement of ions present in aqueous phase by application of a DC voltage across the interface.This electrophoretic movement of ions across oil-water interfaces causes the Faraday instabilities leading to oscillations of the said interface.This method could also be used to study the stress levels in the interfacial films between two immiscible liquids. It explores more-than-Moore’s paradigm by finding a substitute to a conventional alternator/inverter that generates alternating current upon applying DC voltage input. This work would be of substantial interest to researchers exploring alternatives to conventional AC generators that can be used in liquid environments and in the design of novel integrated circuits that could be used for unconventional computing applications.


2009 ◽  
Vol E92-C (3) ◽  
pp. 288-295
Author(s):  
Kazunori YAMANAKA ◽  
Kazuaki KURIHARA ◽  
Akihiko AKASEGAWA ◽  
Masatoshi ISHII ◽  
Teru NAKANISHI

2016 ◽  
Vol 26 (4) ◽  
pp. 319-347 ◽  
Author(s):  
Han-Yu Deng ◽  
Feng Feng ◽  
Xiao-Song Wu

2002 ◽  
Author(s):  
B.V. Savinykh ◽  
I. R. Sagbiev ◽  
A. A. Mukhamadiev ◽  
F. M. Gumerov ◽  
B. Le Niendre

Sign in / Sign up

Export Citation Format

Share Document