A highly elastic and flexible solid-state polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium batteries

2017 ◽  
Vol 41 (21) ◽  
pp. 13096-13103 ◽  
Author(s):  
Yang Li ◽  
Ka Wai Wong ◽  
Qianqian Dou ◽  
Wei Zhang ◽  
Lixiang Wang ◽  
...  

The highly elastic and flexible solid-state polymer electrolyte exhibits enhanced ionic conductivity, an enhanced lithium ion transference number and a wide electrochemical window.

2016 ◽  
Vol 52 (23) ◽  
pp. 4369-4372 ◽  
Author(s):  
Yang Li ◽  
Ka-Wai Wong ◽  
Ka-Ming Ng

We report a novel hybrid electrolyte based on mesoporous silica nanoparticles decorated with an ionic liquid, which exhibits a superior lithium ion transference number of >0.8, and an excellent electrochemical window of >5 V with attractive ionic conductivity.


2017 ◽  
Vol 5 (25) ◽  
pp. 12934-12942 ◽  
Author(s):  
Ouwei Sheng ◽  
Chengbin Jin ◽  
Jianmin Luo ◽  
Huadong Yuan ◽  
Cong Fang ◽  
...  

The solid-state Li–S batteries using N-CNs/S cathode and composite polymer electrolyte added IL@ZrO2can work at the human body temperature of 37 °C.


2019 ◽  
Vol 22 (1) ◽  
Author(s):  
Linh Thi-My Le ◽  
Thanh Duy Vo ◽  
Hoang Van Nguyen ◽  
Quan Phung ◽  
Man Van Tran ◽  
...  

Introduction: Ionic liquids (ILs) have become a prospective candidate to replace the conventional electrolytes based on the volatile organic-solvents in lithium-ion batteries. However, the drawbacks of high viscosity and low ionic conductivity have restricted the high rate capacity and energy density in practical batteries. With the aims to resolve these problems and design a safe electrolytes with high electrochemical stability, mixtures of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMITFSI) with different amounts of ethylene carbonate (EC) was prepared and characterized as electrolytes for Li-ion batteries. Methods: In this work, we investigated four factors to demonstrate the performance of EMITFSI as electrolytes for Li-ion batteries. These factors include: thermal properties of mixed electrolytes (Mettler Toledo DSC1 Star -DSC, Q500-TGA), Conductivity (HP- AC impedance spectroscopy), Viscosity (Ostwald viscometer CANNON) and electrochemical window (cyclic voltammetry-MGP2 Biologic Instrument). All experiments were repeated three times with the exception of TGA-DSC methods. Results: The study indicated that 20 % wt. ethylene carbonate (EC) when mixed with EMITFSI could significantly decrease the electrolyte viscosity while improving ionic conductivity and maintain similar electrochemical stability as pure ionic liquid. Lithium diffusion coefficient of mixed electrolytes was lower than commercial electrolytes based on conventional solvents, however, the thermal stability was enhanced. Conclusion: EMITFSI can be used to replace conventional carbonate-based liquids as a high-performance electrolyte for Li-ion batteries.  


2016 ◽  
Vol 8 (48) ◽  
pp. 32637-32642 ◽  
Author(s):  
Raphael Zahn ◽  
Marie Francine Lagadec ◽  
Michael Hess ◽  
Vanessa Wood

Author(s):  
Yixi Kuai ◽  
Feifei Wang ◽  
Jun Yang ◽  
Huichao Lu ◽  
Zhixin Xu ◽  
...  

All-solid-state lithium batteries (ASSLBs) are in urgent demand for future energy storage. The basic problems are, however, low ambient-temperature ionic conductivity and narrow electrochemical windows of solid electrolytes as well...


Ionics ◽  
2020 ◽  
Vol 26 (9) ◽  
pp. 4299-4309
Author(s):  
Xiaoming Zhao ◽  
Cheng-an Tao ◽  
Yujiao Li ◽  
Xianzhe Chen ◽  
Jianfang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document