Five-nanometer ZnSn2O4:Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm

Nanoscale ◽  
2017 ◽  
Vol 9 (25) ◽  
pp. 8631-8638 ◽  
Author(s):  
Jin-Lei Li ◽  
Jun-Peng Shi ◽  
Cheng-Cheng Wang ◽  
Peng-Hui Li ◽  
Zhen-Feng Yu ◽  
...  

Schematic illustration of the synthesis, functionalization and repeated in vivo simulated deep tissue imaging of ZSO NPLNPs.

Nanoscale ◽  
2018 ◽  
Vol 10 (46) ◽  
pp. 22066-22066 ◽  
Author(s):  
Jin-Lei Li ◽  
Jun-Peng Shi ◽  
Cheng-Cheng Wang ◽  
Peng-Hui Li ◽  
Zhen-Feng Yu ◽  
...  

Correction for ‘Zn2SnO4:Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm’ by Hongwu Zhang et al., Nanoscale, 2017, 9, 8631–8638.


2021 ◽  
Vol 173 ◽  
pp. 141-163
Author(s):  
Fei Ding ◽  
Jing Feng ◽  
Xueli Zhang ◽  
Jielin Sun ◽  
Chunhai Fan ◽  
...  

2018 ◽  
Vol 9 (10) ◽  
pp. 5011 ◽  
Author(s):  
Jiafu Wang ◽  
Hua Li ◽  
Geng Tian ◽  
Yong Deng ◽  
Qian Liu ◽  
...  

2011 ◽  
Vol 21 (9) ◽  
pp. 2877 ◽  
Author(s):  
Shohei Taniguchi ◽  
Mark Green ◽  
Sarwat B. Rizvi ◽  
Alexander Seifalian

2018 ◽  
Vol 9 (10) ◽  
pp. 2705-2710 ◽  
Author(s):  
Wei Qin ◽  
Pengfei Zhang ◽  
Hui Li ◽  
Jacky W. Y. Lam ◽  
Yuanjing Cai ◽  
...  

A successful strategy for the design of ultrabright red luminogens with aggregation-induced emission (AIE) features is reported. The AIE dots can be utilized as efficient fluorescent probes for in vivo deep-tissue imaging with high penetration depth and high contrast.


2020 ◽  
Vol 11 (9) ◽  
pp. 4976
Author(s):  
Kwanjun Park ◽  
June Hoan Kim ◽  
Taedong Kong ◽  
Woong Sun ◽  
Jonghwan Lee ◽  
...  

2018 ◽  
Author(s):  
Fabiane Sônego ◽  
Sophie Bouccara ◽  
Thomas Pons ◽  
Nicolas Lequeux ◽  
Anne Danckaert ◽  
...  

AbstractEarly detection of tumours is today a major challenge and requires sensitive imaging methodologies coupled with new efficient probes. Bioluminescence imaging has been widely used in the field of oncology and several cancer cell lines have been genetically modified to provide bioluminescence signals. However, photons that are emitted by the majority of commonly used luciferases are usually in the blue part of the visible spectrum, where tissue absorption is still very high, making deep tissue imaging non-optimal and calling for optimised optical imaging methodologies. We have previously shown that red-shifting of bioluminescence signal by Fluorescence Unbound Excitation from Luminescence (FUEL) is a mean to increase bioluminescence signal sensitivity detection in vivo. Here, we applied FUEL to tumour detection in two different subcutaneous tumour models: the auto-luminescent human embryonic kidney (HEK293) cell line and the murine B16-F10 melanoma cell line previously transfected with the plasmid Luc2. Tumour size and bioluminescence were measured over time and tumour vascularization characterized. We then locally injected near infrared emitting Quantum Dots (NIR QDs)in the tumour site and observed a red-shifting of bioluminescence signal by (FUEL) indicating that FUEL could be used to allow deeper tumour detection.


Sign in / Sign up

Export Citation Format

Share Document