Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells

Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14486-14498 ◽  
Author(s):  
Lisa Prisner ◽  
Nadine Bohn ◽  
Ulrich Hahn ◽  
Alf Mews

The receptor–ligand mediated AuNP delivery to cells is strongly dependent on the particle size, as investigated by comparing very small “molecular” Au clusters of only 2 nm with larger 7 nm AuNPs and 36 nm AuNPs with a distinct surface plasmon resonance.

2016 ◽  
Author(s):  
Elżbieta U. Stolarczyk ◽  
Krzysztof Stolarczyk ◽  
Marek Kubiszewski ◽  
Marta Łaszcz ◽  
Wioleta Maruszak

For many years research has been carried out to form selective drug carriers. Gold nanoparticles (AuNP) are of particular interest. New perspectives of these nanoparticles as drug carries include: the use of drugs which are poorly soluble in water, targeted delivery of drugs, transport by barrier membranes, the possibility of macromolecular drug release, "combined" treatment - two or more drugs, securing faster mechanisms of action and improved efficiency of drugs. Drug-modified gold nanoparticles (R-AuNP) have been synthesized in a single-phase system based on the reduction of hydrogen tetrachloroaurate (III) using the stabilizing ligand. The color change from yellow to deep ruby red indicated the formation of gold nanoparticles. The formation of stabilized gold nanoparticles was confirmed by the observation of the surface plasmon resonance band. Varying drug concentrations and kinds of solvents were used for the reduction of tetrachloroaurate to determine the effect of drug/ligand concentration and solvent type on the formation of AuNPs. The stability of newly synthesized R-AuNPs was characterized using UV-Vis spectroscopy. The conjugated particles (the resulting AuNPs) were characterized by several techniques, including transmission electron microscopy (TEM), UV-Vis spectroscopy, infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance spectroscopy (NMR), capillary electrophoresis, electrochemical techniques and zeta potential measurement. In any application of the AuNPs, it is important first to determine their basic physico-chemical characteristics, such as, e.g. size, shape, mono- or polydispersity, UV–Vis spectra, electrokinetic potential as well as other special parameters and analytical methods employed in the characterization of the AuNPs. TEM is a powerful and straightforward method for the determination of size (including size distribution) and shape of the AuNPs. UV–Vis absorption spectrophotometry allows for an in situ direct analysis of colloidal solutions. The position of the observed band maxima (typically in the range 500 – 600 nm) is usually related to particle size. However, the position of the surface-plasmon resonance (SPR) maximum cannot be directly related to the particle size of the NPs and other factors have to be considered. The capillary electrophoresis is the method applied to confirm the formation of nanoparticles as well as to determine the drug residuals in the leachate during the purification of the conjugates. By means of infrared and Raman spectroscopy it is possible to study the molecular species deposited on the AuNPs. The NMR spectroscopy and electrochemical techniques are used to confirm the attached drugs. Complete structural characterization of the organic molecules attached to the AuNPs surface was carried out.


2016 ◽  
Author(s):  
Elżbieta U. Stolarczyk ◽  
Krzysztof Stolarczyk ◽  
Marek Kubiszewski ◽  
Marta Łaszcz ◽  
Wioleta Maruszak

For many years research has been carried out to form selective drug carriers. Gold nanoparticles (AuNP) are of particular interest. New perspectives of these nanoparticles as drug carries include: the use of drugs which are poorly soluble in water, targeted delivery of drugs, transport by barrier membranes, the possibility of macromolecular drug release, "combined" treatment - two or more drugs, securing faster mechanisms of action and improved efficiency of drugs. Drug-modified gold nanoparticles (R-AuNP) have been synthesized in a single-phase system based on the reduction of hydrogen tetrachloroaurate (III) using the stabilizing ligand. The color change from yellow to deep ruby red indicated the formation of gold nanoparticles. The formation of stabilized gold nanoparticles was confirmed by the observation of the surface plasmon resonance band. Varying drug concentrations and kinds of solvents were used for the reduction of tetrachloroaurate to determine the effect of drug/ligand concentration and solvent type on the formation of AuNPs. The stability of newly synthesized R-AuNPs was characterized using UV-Vis spectroscopy. The conjugated particles (the resulting AuNPs) were characterized by several techniques, including transmission electron microscopy (TEM), UV-Vis spectroscopy, infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance spectroscopy (NMR), capillary electrophoresis, electrochemical techniques and zeta potential measurement. In any application of the AuNPs, it is important first to determine their basic physico-chemical characteristics, such as, e.g. size, shape, mono- or polydispersity, UV–Vis spectra, electrokinetic potential as well as other special parameters and analytical methods employed in the characterization of the AuNPs. TEM is a powerful and straightforward method for the determination of size (including size distribution) and shape of the AuNPs. UV–Vis absorption spectrophotometry allows for an in situ direct analysis of colloidal solutions. The position of the observed band maxima (typically in the range 500 – 600 nm) is usually related to particle size. However, the position of the surface-plasmon resonance (SPR) maximum cannot be directly related to the particle size of the NPs and other factors have to be considered. The capillary electrophoresis is the method applied to confirm the formation of nanoparticles as well as to determine the drug residuals in the leachate during the purification of the conjugates. By means of infrared and Raman spectroscopy it is possible to study the molecular species deposited on the AuNPs. The NMR spectroscopy and electrochemical techniques are used to confirm the attached drugs. Complete structural characterization of the organic molecules attached to the AuNPs surface was carried out.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1490
Author(s):  
Enrico Gazzola ◽  
Michela Cittadini ◽  
Marco Angiola ◽  
Laura Brigo ◽  
Massimo Guglielmi ◽  
...  

Solution processed TiO2 anatase film was used as sensitive layer for H2 detection for two plasmonic sensor configurations: A grating-coupled surface plasmon resonance sensor and a localized surface plasmon resonance sensor with gold nanoparticles. The main purpose of this paper is to elucidate the different H2 response observed for the two types of sensors which can be explained considering the hydrogen dissociation taking place on TiO2 at high temperature and the photocatalytic activity of the gold nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document