scholarly journals Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material

RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25334-25340 ◽  
Author(s):  
Zhipeng Bu ◽  
Linlin Zang ◽  
Yanhong Zhang ◽  
Xiaojian Cao ◽  
Liguo Sun ◽  
...  

3D magnetic porous graphene/multi-walled carbon nanotube beads were fabricated by a modified microfluidic device for efficient, recyclable oil/water mixture separation.

2020 ◽  
Vol 22 (2) ◽  
pp. 504-512 ◽  
Author(s):  
Lei Kang ◽  
Bin Wang ◽  
Jinsong Zeng ◽  
Zheng Cheng ◽  
Jinpeng Li ◽  
...  

A degradable dual lignocellulosic fiber with superwetting characteristics was successfully fabricated by a strategically adjusted condensation reaction of melamine and formaldehyde, maintaining high efficiency for oil/water mixture separation.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5035-5043
Author(s):  
Jinxiu Ma ◽  
Wen Meng ◽  
Lahong Zhang ◽  
Feng Li ◽  
Taohai Li

The nickel-dimethylglyoxime microtubes were synthesized by a facile coprecipitation method. The as-prepared superhydrophobic and superoleophilic films showed excellent oil–water separation efficiency and effective photocatalytic degradation.


2022 ◽  
pp. 52117
Author(s):  
Kandiyil Juraij ◽  
Chinglenthoiba Chingakham ◽  
Olongal Manaf ◽  
Paroly Sagitha ◽  
Vasudevan Suni ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Chen ◽  
Hui Fan ◽  
Xinlin Zha ◽  
Wenwen Wang ◽  
Yi Wu ◽  
...  

AbstractHigh efficiency and anti-pollution oil/water separation membrane has been widely explored and researched. There are a large number of hydroxyl groups on the surface of silica, which has good wettability and can be used for oil-water separation membranes. Hydrophilic silica nanostructures with different morphologies were synthesized by changing templates and contents of trimethylbenzene (TMB). Here, silica nanospheres with radical pores, hollow silica nanospheres and worm-like silica nanotubes were separately sprayed on the PVA-co-PE nanofiber membrane (PM). The abundance of hydroxyl groups and porous structures on PM surfaces enabled the absorption of silica nanospheres through hydrogen bonds. Compared with different silica nanostructures, it was found that the silica/PM exhibited excellent super-hydrophilicity in air and underwater “oil-hating” properties. The PM was mass-produced in our lab through melt-extrusion-phase-separation technique. Therefore, the obtained membranes not only have excellent underwater superoleophobicity but also have a low-cost production. The prepared silica/PM composites were used to separate n-hexane/water, silicone oil/water and peanut oil water mixtures via filtration. As a result, they all exhibited efficient separation of oil/water mixture through gravity-driven filtration.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1699-1706
Author(s):  
Hussain Al-Qahtani ◽  
Michael S. H. Boutilier ◽  
Rahul Ramakrishnan ◽  
Rohit Karnik

ABSTRACTThis article presents a laboratory module developed for undergraduate micro/nano engineering laboratory courses in the mechanical engineering departments at the Massachusetts Institute of Technology and King Fahd University of Petroleum and Minerals. In this laboratory, students fabricate superoleophobic membranes by spray-coating of titania nanoparticles on steel meshes, characterize the surfaces and ability of the membrane to retain oil, and then use these membranes to separate an oil-water mixture. The laboratory module covers nanomaterials, nanomanufacturing, materials characterization, and understanding of the concepts of surface tension and hydrostatics, with oil-water separation as an application. The laboratory experiments are easy to set up based on commercially available tools and materials, which will facilitate implementation of this module in other educational institutions. The significance of oil-water separation in the petroleum industry and integration of concepts from fluid mechanics in the laboratory module will help to illustrate the relevance of nanotechnology to mechanical and materials engineering and its potential to address some of the future societal needs.


2020 ◽  
Vol 8 ◽  
Author(s):  
Usama Zulfiqar ◽  
Andrew G. Thomas ◽  
Allan Matthews ◽  
David J. Lewis

Oil/water mixtures are a potentially major source of environmental pollution if efficient separation technology is not employed during processing. A large volume of oil/water mixtures is produced via many manufacturing operations in food, petrochemical, mining, and metal industries and can be exposed to water sources on a regular basis. To date, several techniques are used in practice to deal with industrial oil/water mixtures and oil spills such as in situ burning of oil, bioremediation, and solidifiers, which change the physical shape of oil as a result of chemical interaction. Physical separation of oil/water mixtures is in industrial practice; however, the existing technologies to do so often require either dissipation of large amounts of energy (such as in cyclones and hydrocyclones) or large residence times or inventories of fluids (such as in decanters). Recently, materials with selective wettability have gained attention for application in separation of oil/water mixtures and surfactant stabilized emulsions. For example, a superhydrophobic material is selectively wettable toward oil while having a poor affinity for the aqueous phase; therefore, a superhydrophobic porous material can easily adsorb the oil while completely rejecting the water from an oil/water mixture, thus physically separating the two components. The ease of separation, low cost, and low-energy requirements are some of the other advantages offered by these materials over existing practices of oil/water separation. The present review aims to focus on the surface engineering aspects to achieve selectively wettability in materials and its their relationship with the separation of oil/water mixtures with particular focus on emulsions, on factors contributing to their stability, and on how wettability can be helpful in their separation. Finally, the challenges in application of superwettable materials will be highlighted, and potential solutions to improve the application of these materials will be put forward.


Author(s):  
Ang Li ◽  
Jianfeng Bai ◽  
Yun Shen ◽  
Hang Jin ◽  
Wei Wang ◽  
...  

The three-phase separator has a wide range of applications in oil production industry. For the purpose of studying the effect of heating temperature, demulsifiers and water content on the separation of oil-water mixture in the three-phase separator, eight kinds of oil samples were taken from different oil transfer stations in Changqing Oilfield and the mixtures were prepared by stirring method. To simulate the two-stage dehydration process, the first stage dehydration experiments without any heating were performed on mixtures at the dose of 100ppm demulsifer at 20°C, and the water cut of these mixtures is the same as that of the gathering pipeline in each oil transfer station. The water cut of the upper crude oil was measured after 40 minutes, and the values of them ranged from 0.5 vol% to 65.2 vol%. No visual stratification was observed for the sample most difficult to separate, so it was selected to conduct the second stage dewatering process. Three bottles of the same mixture were prepared and heated to 30°C, 40°C and 50°C, respectively. The results showed that all of them stratified in 10 minutes, and the water-cut values of the upper oil layer were 1.4 vol%, 0.5 vol% and 0.3 vol%, respectively, compared to 65.2 vol% at 20°C. When the concentration of demulsifier was changed to 200ppm and 300ppm, the results exhibited almost no differences. So it is deduced that the further improvement of heating temperature and demulsifier dose have limited enhancement on oil-water separation. At Last, 35 vol%, 50 vol%, 70 vol% and 85 vol% water cut mixtures of the special oil sample were made to experiment as previously. In consequence, the 35 vol% water-cut emulsions presented a relatively slow rate of oil-water stratification at low heating temperature, and the oil content of the lower separated water was improved by the addition of demulsifier dosage above 100ppm when the water cut was 90 vol%. It is indicated that high heating temperature is necessarry for low water-cut mixtures oil-water separation and can be appropriately reduced to save energy consumption as the water cut continues to rise. The demulsifier dosage is also neccessary be controlled in high water cut period. These experimental data provide the basis for the further optimization operation of the three-phase separator.


2019 ◽  
Vol 10 (37) ◽  
pp. 5142-5150 ◽  
Author(s):  
Ji Ae Chae ◽  
Yuree Oh ◽  
Hea Ji Kim ◽  
Go Bong Choi ◽  
Kyoung Min Lee ◽  
...  

A bottom-up design enables the preparation of a mesoporous, compressible, polymer monolith that shows rapid separation of oil–water mixture.


Sign in / Sign up

Export Citation Format

Share Document