spray coating
Recently Published Documents


TOTAL DOCUMENTS

1495
(FIVE YEARS 430)

H-INDEX

53
(FIVE YEARS 10)

2022 ◽  
pp. 152808372110709
Author(s):  
Ashraf Nawaz Khan ◽  
Vijay Goud ◽  
Ramasamy Alagirusamy ◽  
Puneet Mahajan ◽  
Apurba Das

In the present study, an attempt has been made to coat the non-conductive Ultra-high Molecular Weight Polyethylene (UHMWPE) fibers with Low-Density Polyethylene (LDPE) powder. In order to enable the deposition of electrostatically charged LDPE powder onto the fiber surface, UHMWPE fibers are dipped into a surface modification bath to impart momentary conductivity. Further, Box Behnken’s experimental design is used to optimize the processing parameters for Fiber Volume Fraction (Vf) for this wet electrostatic spray coating process. An experimental multi-parametric equation is acquired through response surface methodology to ascertain the association amid the process parameters such as processing temperature (A), conveying air pressure (B), and gun nozzle angle (C) on the output response of Vf. The process parametric values for A, B, and C are varied from 225°C to 245°C, 0.2 bar to 0.4 bar, and 0° to 120° respectively. The Vf obtained is in the range of 37.02%–56.28% depending on the combination of process parametric values. Powder pick-up increases with an increase in the gun nozzle angle. An increase in conveying air pressure and temperature of the hot air oven leads to an increase in powder deposition. The values predicted from the model are observed to be in close proximity (94.59%) to the experimental results. Gun nozzle angle is the principal parameter affecting the matrix deposition on the fiber surface in comparison to other process parameters.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 149
Author(s):  
Michael Choi ◽  
Stuart C. Porter ◽  
Axel Meisen

Oral solid dosage forms that contain APIs in the amorphous state have become commonplace because of many drug substances exhibiting poor water solubility, which negatively impacts their absorption in the human GI tract. While micronization, solvent spray-drying, and hot-melt extrusion can address solubility issues, spray coating of the APIs onto beads and tablets offers another option for producing amorphous drug products. High-level comparisons between bead and tablet coating technologies have the potential for simpler equipment and operation that can reduce the cost of development and manufacturing. However, spray coating directly onto tablets is not without challenges, especially with respect to meeting uniformity acceptance value (AV) criteria, comprising accuracy (mean) and precision (variance) objectives. The feasibility of meeting AV criteria is examined, based on mathematical models for accuracy and precision. The results indicate that the main difficulty in manufacturing satisfactory drug-layered tablets by spray coating is caused by the practical limitations of achieving the necessary coating precision. Despite this limitation, it is shown that AV criteria can be consistently met by appropriate materials monitoring and control as well as processing equipment setup, operation, and maintenance.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 445
Author(s):  
Kai-Uwe Zirk ◽  
Manuel Olze ◽  
Harald Pötzschke

This article presents a novel method for the detection of biofilms based on a heatable, capacitive sensor structure (CSS). Biofilms are capable of strongly binding large amounts of water to their extracellular biopolymer matrix, which is detectable via its dielectric properties. A main challenge is to determine the difference between the inherent occurring presence of moisture in the ecosystem, which is necessary to form a biofilm and an actual formed biofilm. Therefore, the CSS is carefully heated to evaporate unbound surface moisture and determine whether there is a remaining residual alternation of the capacitance in comparison to the dry state. As a reproduceable substitute for complex, real biofilms, a hygroscopic, medical hydrogel-based on polysaccharides was used and applied by spray coating. Printed circuit boards (PCB) in different geometries and materials were used as CSS and compared in terms of their performance. A layer-thickness of 20 µm for the hydrogel coating to be sufficiently detected was defined as a realistic condition based on known values for real biofilms cited in literature. For this thickness a double-meander structure proves to be preferable over interdigitating and spiral geometries. It does offer a 30% lower, yet sufficient sensitivity, but shows advantages in manufacturing (one layer instead of two) and conductive heating capability. In the experiments, free water showed virtually no residual change, while the hydrogel-coated CSS still shows an approx. 300% higher value compared to a dry capacity. Yet, the overall small capacities of about 6–30 pF in dry state are difficult to measure and therefore sensitive to interferences and noise, which results in a high deviation. The principle of measurement can be evaluated as proofed by the carried out experiments, though offering room for improvement in the design of the study. The new method might be especially useful for pipes (e.g., hydrodynamically ineffective sensors installed in a pipe wall) if they at least are not permanently flooded with an aqueous medium, but can occasionally dry. If the internal surface is still only moist, it can be dried by initial heating.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 303
Author(s):  
Gunnar Símonarson ◽  
Antiope Lotsari ◽  
Anders E. C. Palmqvist

A low-temperature spray deposition synthesis was developed to prepare locally hexagonally ordered mesoporous titania films with polycrystalline anatase pore walls in an evaporation-induced self-assembly process. The titania film preparation procedure is conducted completely at temperatures below 50 °C. The effects of spray time, film thickness, synthesis time prior to spray deposition, and aging time at high relative humidity after deposition on the atomic arrangement and the mesoorder of the mesoporous titania were studied. We find the crystallite size to depend on both the synthesis time and aging time of the films, where longer times result in larger crystallites. Using the photocatalytic activity of titania, the structure-directing agent is removed with UV radiation at 43–46 °C. The capability of the prepared films to remove the polymer template increased with longer synthesis and aging times due to the increased crystallinity, which increases the photocatalytic efficiency of the titania films. However, with increasingly longer times, the crystallites grow too large for the mesoorder of the pores to be maintained. This work shows that a scalable spray coating method can be used to prepare locally ordered mesoporous polycrystalline titania films by judiciously tuning the synthesis parameters.


Author(s):  
А.А. Некрасов ◽  
О.Л. Грибкова ◽  
Т.В. Кривенко

The influence of coating method (spray-coating or drop-casting onto horizontal substrate) on the electrochromic characteristics of the layers of water-soluble polyaniline-polyacid complex was investigated. It was shown that in case of addition of single-wall nanotubes the polyaniline-polyacid layers prepared by scalable spray-coating technology demonstrate high coloration speed an electrochromic efficiency.


2022 ◽  
pp. 111718
Author(s):  
Peerapong Yotprayoonsak ◽  
Nophanon Anusak ◽  
Jorma Virtanen ◽  
Veijo Kangas ◽  
Vinich Promarak

2022 ◽  
Vol 572 ◽  
pp. 151416
Author(s):  
Youngoh Kim ◽  
JaeHwang Kim ◽  
Jang-Woo Han ◽  
Joonmyung Choi

Sign in / Sign up

Export Citation Format

Share Document