scholarly journals Gravity-Driven Separation of Oil/Water Mixture by Porous Ceramic Membranes with Desired Surface Wettability

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 66
Author(s):  
Zhongjie Zhu ◽  
Lei Jiang ◽  
Jia Liu ◽  
Sirui He ◽  
Wei Shao

A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed and fabricated by a simple and sustainable method in this study in order to achieve highly efficient gravity-driven oil/water separation performance. The fluorinated silica functionalization invests the pristine hydrophilic chitosan (CS) aerogel with promising superhydrophobicity with a water contact angle of 151.9°. This novel F-CS aerogel possesses three-dimensional structure with high porosity as well as good chemical stability and mechanical compression property. Moreover, it also shows striking self-cleaning performance and great oil adsorption capacity. Most importantly, the as-prepared aerogels exhibits fast and efficient separation of oil/water mixture by the gravity driven process with high separation efficiency. These great performances render the prepared F-CS aerogel a good candidate for oil/water separation in practical industrial application.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Chen ◽  
Hui Fan ◽  
Xinlin Zha ◽  
Wenwen Wang ◽  
Yi Wu ◽  
...  

AbstractHigh efficiency and anti-pollution oil/water separation membrane has been widely explored and researched. There are a large number of hydroxyl groups on the surface of silica, which has good wettability and can be used for oil-water separation membranes. Hydrophilic silica nanostructures with different morphologies were synthesized by changing templates and contents of trimethylbenzene (TMB). Here, silica nanospheres with radical pores, hollow silica nanospheres and worm-like silica nanotubes were separately sprayed on the PVA-co-PE nanofiber membrane (PM). The abundance of hydroxyl groups and porous structures on PM surfaces enabled the absorption of silica nanospheres through hydrogen bonds. Compared with different silica nanostructures, it was found that the silica/PM exhibited excellent super-hydrophilicity in air and underwater “oil-hating” properties. The PM was mass-produced in our lab through melt-extrusion-phase-separation technique. Therefore, the obtained membranes not only have excellent underwater superoleophobicity but also have a low-cost production. The prepared silica/PM composites were used to separate n-hexane/water, silicone oil/water and peanut oil water mixtures via filtration. As a result, they all exhibited efficient separation of oil/water mixture through gravity-driven filtration.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1699-1706
Author(s):  
Hussain Al-Qahtani ◽  
Michael S. H. Boutilier ◽  
Rahul Ramakrishnan ◽  
Rohit Karnik

ABSTRACTThis article presents a laboratory module developed for undergraduate micro/nano engineering laboratory courses in the mechanical engineering departments at the Massachusetts Institute of Technology and King Fahd University of Petroleum and Minerals. In this laboratory, students fabricate superoleophobic membranes by spray-coating of titania nanoparticles on steel meshes, characterize the surfaces and ability of the membrane to retain oil, and then use these membranes to separate an oil-water mixture. The laboratory module covers nanomaterials, nanomanufacturing, materials characterization, and understanding of the concepts of surface tension and hydrostatics, with oil-water separation as an application. The laboratory experiments are easy to set up based on commercially available tools and materials, which will facilitate implementation of this module in other educational institutions. The significance of oil-water separation in the petroleum industry and integration of concepts from fluid mechanics in the laboratory module will help to illustrate the relevance of nanotechnology to mechanical and materials engineering and its potential to address some of the future societal needs.


2018 ◽  
Vol 338 ◽  
pp. 271-277 ◽  
Author(s):  
Chenghong Ao ◽  
Rui Hu ◽  
Jiangqi Zhao ◽  
Xiaofang Zhang ◽  
Qingye Li ◽  
...  

NANO ◽  
2021 ◽  
pp. 2150061
Author(s):  
Yuntian Wan ◽  
Xue Lin ◽  
Zhongshuai Chang ◽  
Xiaohui Dai ◽  
Jiangdong Dai

Currently, with the increasingly serious pollution problem of oily wastewater, it is urgent to develop advanced materials and methods. In this work, a Fe(III)-CMC@Ni(OH)2@Ni composite foam with superhydrophilic and underwater superoleophobicity was fabricated by an in situ growth of flower-like Ni(OH)2 nanoparticles and chelated assembly of Fe(III)-CMC nanohydrogel via a layer-by-layer self assembly using Fe[Formula: see text] ion and carboxymethyl cellulose (CMC). The composite foam could separate various oil/water mixtures and exhibited excellent efficiency over 99%. This foam possessed ultrahigh water flux (220000[Formula: see text]L m[Formula: see text] h[Formula: see text] and better resistant to penetration pressure (1.3[Formula: see text]kPa). After 30 cycles, the oil–water separation performance reduced only 0.5%, but the foam structure was still stable that guarantees a better lifetime. Besides, this composite foam showed anti-fouling, unique durability and excellent corrosion resistance performance. Taking into account all good properties, Fe(III)-CMC@Ni(OH)2@Ni composite foam was expected to be a potential candidate for responding to all kinds of complex oily wastewater conditions.


Sign in / Sign up

Export Citation Format

Share Document