scholarly journals Synthesis of novel copolymers based on p-methylstyrene, N,N-butylvinylimidazolium and polybenzimidazole as highly conductive anion exchange membranes for fuel cell application

RSC Advances ◽  
2017 ◽  
Vol 7 (75) ◽  
pp. 47806-47817 ◽  
Author(s):  
Amina Ouadah ◽  
Hulin Xu ◽  
Tianwei Luo ◽  
Shuitao Gao ◽  
Zeyu Zhang ◽  
...  

A series of copolymers based N,N-butylvinylimidazolium, p-methylstyrene and polybenzimidazole as anion exchange membrane materials VIBx/PMSy/PBIz.

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 454
Author(s):  
Aruna Kumar Mohanty ◽  
Young-eun Song ◽  
Jung-rae Kim ◽  
Nowon Kim ◽  
Hyun-jong Paik

A class of phenolphthalein anilide (PA)-based poly(ether sulfone) multiblock copolymers containing pendant quaternary ammonium (QA) and imidazolium (IM) groups were synthesized and evaluated as anion exchange membrane (AEM) materials. The AEMs were flexible and mechanically strong with good thermal stability. The ionomeric multiblock copolymer AEMs exhibited well-defined hydrophobic/hydrophilic phase-separated morphology in small-angle X-ray scattering and atomic force microscopy. The distinct nanophase separated membrane morphology in the AEMs resulted in higher conductivity (IECw = 1.3–1.5 mequiv./g, σ(OH−) = 30–38 mS/cm at 20 °C), lower water uptake and swelling. Finally, the membranes were compared in terms of microbial fuel cell performances with the commercial cation and anion exchange membranes. The membranes showed a maximum power density of ~310 mW/m2 (at 0.82 A/m2); 1.7 and 2.8 times higher than the Nafion 117 and FAB-PK-130 membranes, respectively. These results demonstrated that the synthesized AEMs were superior to Nafion 117 and FAB-PK-130 membranes.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2335 ◽  
Author(s):  
Lina Wang ◽  
Benbing Shi

In this study, imidazolium brushes tethered by –NH2-containing ligands were grafted onto the surface of a 2D material, MXene, using precipitation polymerization followed by quaternization. Functionalized MXene was embedded into chitosan matrix to prepare a hybrid alkaline anion exchange membrane. Due to high interfacial compatibility, functionalized MXene was homogeneously dispersed in chitosan matrix, generating continuous ion conduction channels and then greatly enhancing OH− conduction property (up to 172%). The ability and mechanism of OH− conduction in the membrane were elaborated based on systematic tests. The mechanical-thermal stability and swelling resistance of the membrane were evidently augmented. Therefore, it is a promising anion exchange membrane for alkaline fuel cell application.


2020 ◽  
Vol MA2020-02 (37) ◽  
pp. 2361-2361
Author(s):  
Ave Sarapuu ◽  
Kaarel Kisand ◽  
Dmytro Danilian ◽  
Arvo Kikas ◽  
Vambola Kisand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document