scholarly journals Complex magnetism of the two-dimensional antiferromagnetic Ge2F: from a Néel spin-texture to a potential antiferromagnetic skyrmion

RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).

Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


2017 ◽  
Vol 31 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Xi Chen ◽  
Ming-Gang Xia ◽  
Yang Zhang ◽  
...  

First-principles study based on density functional theory has been employed to investigate width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4–6 (the numbers of zigzag Mo–S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S–Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S–Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S–Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Fayyaz Hussain ◽  
Y. Q. Cai ◽  
M. Junaid Iqbal Khan ◽  
Muhammad Imran ◽  
Muhammad Rashid ◽  
...  

We demonstrate enhanced ferromagnetism in copper doped two-dimensional GaN monolayer ( GaN -ML). Our first principle calculation based on density functional theory predicted that nonmagnetic Cu -dopant with concentration of 6.25% to be ferromagnetic (FM) in 2D GaN layer which carries a magnetic moment of 2.0 μB per Cu atom and it is found to be long range magnetic coupling among the Cu -dopant. The Cu-dopant in 2D GaN -ML which can be explained in terms of p-d hybridization at Curie temperature and this dopant prefer the FM behavior in 2D GaN layer. Hence Cu doped 2D GaN layer shows strong magnetic properties so that it is a promising material in the field of spintronics.


RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 54027-54031 ◽  
Author(s):  
Zhaohuan Liang ◽  
Bo Xu ◽  
Hui Xiang ◽  
Yidong Xia ◽  
Jiang Yin ◽  
...  

We explore the carrier doping effect on magnetic properties in two dimensional (2D) graphene-like C2N (g-C2N) by density functional theory calculations.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5995-6001 ◽  
Author(s):  
Qiang Gao ◽  
Hongbin Zhang

Based on density functional theory calculations, we investigated two-dimensional in-plane ordered MXenes (i-MXenes), focusing particularly on their magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document