scholarly journals High-resolution X-ray diffraction determination of the electron density of 1-(8-PhSC10H6)SS(C10H6SPh-8′)-1′ with the QTAIM approach: evidence for S4 σ(4c–6e) at the naphthalene peri-positions

RSC Advances ◽  
2018 ◽  
Vol 8 (18) ◽  
pp. 9651-9660 ◽  
Author(s):  
Yutaka Tsubomoto ◽  
Satoko Hayashi ◽  
Waro Nakanishi ◽  
Lucy K. Mapp ◽  
Simon J. Coles

The nature of S4 σ(4c–6e) at the 1,8-positions of naphthalene is elucidated via a high-resolution X-ray method with the QTAIM approach.

2019 ◽  
Vol 2019 (6) ◽  
pp. 875-884 ◽  
Author(s):  
Maxim G. Chegerev ◽  
Alexandr V. Piskunov ◽  
Kseniya V. Tsys ◽  
Andrey G. Starikov ◽  
Klaus Jurkschat ◽  
...  

2021 ◽  
Vol 922 (2) ◽  
pp. 256
Author(s):  
Giulia Perotti ◽  
Henning O. Sørensen ◽  
Henning Haack ◽  
Anja C. Andersen ◽  
Dario Ferreira Sanchez ◽  
...  

Abstract Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical microtomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64 nm), spherical inclusions containing Fe–Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite (∼2100 K), and subsequently cooled and contracted, in agreement with chondrule-forming conditions.


1993 ◽  
Vol 26 (4A) ◽  
pp. A181-A187 ◽  
Author(s):  
B F Usher ◽  
G W Smith ◽  
S J Barnett ◽  
A M Keir ◽  
A D Pitt

1988 ◽  
Vol 142 ◽  
Author(s):  
John F. Porter ◽  
Dan O. Morehouse ◽  
Mike Brauss ◽  
Robert R. Hosbons ◽  
John H. Root ◽  
...  

AbstractStudies have been ongoing at Defence Research Establishment Atlantic on the evaluation of non-destructive techniques for residual stress determination in structures. These techniques have included neutron diffraction, x-ray diffraction and blind-hole drilling. In conjunction with these studies, the applicability of these procedures to aid in metallurgical and failure analysis investigations has been explored. The x-ray diffraction technique was applied to investigate the failure mechanism in several bent turbo blower rotor shafts. All examinations had to be non-destructive in nature as the shafts were considered repairable. It was determined that residual stress profiles existed in the distorted shafts which strongly indicated the presence of martensitic microstuctures. These microstructures are considered unacceptable for these shafts due to the potential for cracking or in-service residual stress relaxation which could lead to future shaft distortion.


Sign in / Sign up

Export Citation Format

Share Document