High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules

2017 ◽  
Vol 1 (9) ◽  
pp. 1935-1943 ◽  
Author(s):  
Bat-El Cohen ◽  
Malgorzata Wierzbowska ◽  
Lioz Etgar

A power conversion efficiency of 9.5% and an open circuit voltage of more than 1.4 V were achieved for bromide-based quasi 2D perovskite solar cells.

2019 ◽  
Vol 55 (30) ◽  
pp. 4315-4318 ◽  
Author(s):  
Shengfan Wu ◽  
Zhen Li ◽  
Jie Zhang ◽  
Tiantian Liu ◽  
Zonglong Zhu ◽  
...  

We present a strategy for suppressing the open-circuit voltage (Voc) loss of perovskite solar cells by incorporating large guanidinium cations (Gua+) into a perovskite lattice, leading to a significantly improved Voc of 1.19 V and an impressive power conversion efficiency of >21%.


2015 ◽  
Vol 8 (1) ◽  
pp. 303-316 ◽  
Author(s):  
Abd. Rashid bin Mohd Yusoff ◽  
Dongcheon Kim ◽  
Hyeong Pil Kim ◽  
Fabio Kurt Shneider ◽  
Wilson Jose da Silva ◽  
...  

We propose that 1 + 1 + 1 triple-junction solar cells can provide an increased efficiency, as well as a higher open circuit voltage, compared to tandem solar cells.


2018 ◽  
Vol 54 (76) ◽  
pp. 10770-10773 ◽  
Author(s):  
Jianfeng Li ◽  
Jing Yang ◽  
Junyi Hu ◽  
You Chen ◽  
Bo Xiao ◽  
...  

The first thieno[3,4-b]pyrazine (TP) based non-fullerene acceptor was designed and synthesized, which could realize a moderate power conversion efficiency (PCE) of 5.81% with a high open-circuit voltage (Voc) of 1.05 V by using J61 as a donor polymer.


2019 ◽  
Vol 9 (20) ◽  
pp. 4393 ◽  
Author(s):  
Jien Yang ◽  
Songhua Chen ◽  
Jinjin Xu ◽  
Qiong Zhang ◽  
Hairui Liu ◽  
...  

Perovskite solar cells (PSCs) employing organic-inorganic halide perovskite as active layers have attracted the interesting of many scientists since 2009. The power conversion efficiency (PCE) have pushed certified 25.2% in 2019 from initial 3.81% in 2009, which is much faster than that of any type of solar cell. In the process of optimization, many innovative approaches to improve the morphology of perovskite films were developed, aiming at elevate the power conversion efficiency of perovskite solar cells (PSCs) as well as long-term stability. In the context of PSCs research, the perovskite precursor solutions modified with different additives have been extensively studied, with remarkable progress in improving the whole performance. In this comprehensive review, we focus on the forces induced by additives between the cations and anions of perovskite precursor, such as hydrogen bonds, coordination or some by-product (e.g., mesophase), which will lead to form intermediate adduct phases and then can be converted into high quality films. A compact uniform perovskite films can not only upgrade the power conversion efficiency (PCE) of devices but also improve the stability of PSCs under ambient conditions. Therefore, strategies for the implementation of additives engineering in perovskites precursor solution will be critical for the future development of PSCs. How to manipulate the weak forces in the fabrication of perovskite film could help to further develop high-efficiency solar cells with long-term stability and enable the potential of future practical applications.


2017 ◽  
Vol 5 (44) ◽  
pp. 23067-23077 ◽  
Author(s):  
Keisuke Ogumi ◽  
Takafumi Nakagawa ◽  
Hiroshi Okada ◽  
Ryohei Sakai ◽  
Huan Wang ◽  
...  

Acceptor–donor–acceptor conjugated magnesium porphyrins showed a power conversion efficiency of 5.73%, high open-circuit voltage of 0.79 V, or an extended incident photon-to-current conversion efficiency spectrum to 1100 nm, depending on the substituents.


2020 ◽  
Vol 8 (46) ◽  
pp. 24608-24619 ◽  
Author(s):  
Somayeh Moghadamzadeh ◽  
Ihteaz M. Hossain ◽  
The Duong ◽  
Saba Gharibzadeh ◽  
Tobias Abzieher ◽  
...  

Incorporating 2.5% Cs in FA0.8MA0.2Sn0.5Pb0.5I3 improves the photo-stability of the low-bandgap perovskite solar cells. The champion device with power conversion efficiency of 18.9% maintain 92% of its initial efficiency after 120 min MPP tracking.


2016 ◽  
Vol 2 (1) ◽  
pp. e1501170 ◽  
Author(s):  
Dongqin Bi ◽  
Wolfgang Tress ◽  
M. Ibrahim Dar ◽  
Peng Gao ◽  
Jingshan Luo ◽  
...  

We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2(where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight.


Sign in / Sign up

Export Citation Format

Share Document