Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury

2018 ◽  
Vol 6 (19) ◽  
pp. 2982-2992 ◽  
Author(s):  
Kun Zhang ◽  
Zhenqing Shi ◽  
Jiankang Zhou ◽  
Qu Xing ◽  
Shanshan Ma ◽  
...  

In this contribution, we developed an injectable hydrogel composed of sodium alginate and hyaluronic acid that acts as a tissue scaffold to create a more optimal microenvironment for the stem cells for potential application of traumatic brain injury implantation.

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Jiankang Zhou ◽  
Kun Zhang ◽  
Shanshan Ma ◽  
Tengfei Liu ◽  
Minghao Yao ◽  
...  

AbstractIn the past few decades, stem cell transplantation has been generally accepted as an effective method on the treatment of tissue and organ injury. However, the insufficient number of transplanted stem cells and low survival rate that caused by series of negative conditions limit the therapeutic effect. In this contribution, we developed an injectable hydrogel composed of sodium alginate (SA) and Type I collagen (ColI), as the tissue scaffold to create better growth microenvironment for the stem cells. Compared the traditional SA scaffold, the ColI/SA hydrogel inherits its biomimetic properties, and simultaneously has shorter gelation time which means less loss of the transplanted stem cells. The mesenchyma stem cell (MSC) culture experiments indicated that the ColI/SA hydrogel could prevent the MSC apoptosis and contributed to faster MSC proliferation. It is highlighted that this ColI/SA hydrogel may have potential application for tissue regeneration and organ repair as the stem cell scaffold.


Stem Cells ◽  
2015 ◽  
Vol 33 (2) ◽  
pp. 456-467 ◽  
Author(s):  
Zhe Wang ◽  
Yu Wang ◽  
Zhiyong Wang ◽  
J. Silvio Gutkind ◽  
Zhongliang Wang ◽  
...  

2013 ◽  
Vol 33 (7) ◽  
pp. 673-684 ◽  
Author(s):  
D Torrente ◽  
MF Avila ◽  
R Cabezas ◽  
L Morales ◽  
J Gonzalez ◽  
...  

Traumatic brain injury (TBI) consists of a primary and a secondary insult characterized by a biochemical cascade that plays a crucial role in cell death in the brain. Despite the major improvements in the acute care of head injury victims, no effective strategies exist for preventing the secondary injury cascade. This lack of success might be due to that most treatments are aimed at targeting neuronal population, even if studies show that astrocytes play a key role after a brain damage. In this work, we propose a new model of in vitro traumatic brain-like injury and use paracrine factors released by human mesenchymal stem cells (hMSCs) as a neuroprotective strategy. Our results demonstrate that hMSC-conditioned medium increased wound closure and proliferation at 12 h and reduced superoxide production to control conditions. This was accompanied by changes in cell morphology and polarity index, as both parameters reflect the ability of cells to migrate toward the wound. These findings indicate that hMSC is an important regulator of oxidative stress production, enhances cells migration, and shall be considered as a useful neuroprotective approach for brain recovery following injury.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ping K. Lam ◽  
Kevin K. W. Wang ◽  
Anthony W. I. Lo ◽  
Cindy S. W. Tong ◽  
Don W. C. Ching ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui Ma ◽  
Lian Xu Cui ◽  
Ping Kuen Lam ◽  
Cindy S. W. Tong ◽  
Kin K. Y. Lo ◽  
...  

Abstract Background Our previous studies showed that topical application of mesenchymal stem cells (MSCs) improved functional recovery in rat traumatic brain injury (TBI) model, and hypoxic precondition further enhanced the therapeutic effects of MSCs. There was no previous study on the attenuation of cerebral edema by MSCs. We investigated whether topical application of normoxic and hypoxic MSCs could reduce cerebral edema in an experimental TBI model. Methods Two million normoxic (N = 24) and hypoxic (N = 24) MSCs were applied topically to exposed the cerebral cortex in a controlled cortical impact (CCI) model. The MSCs were fixed in position with fibrin glue. No treatment was given to control animals (TBI only: n = 24). After surgery, four animals in each group were sacrificed daily (day 1 to day 6) for edema evaluation. Normal animals without TBI were used as reference (n = 4). The expressions of GFAP, AQP4, and MMP9 were also investigated by immunofluorescence staining and RT-PCR at day 3. Results The edema peaked within 3 days after TBI. Compared with the control, hypoxic MSCs reduced brain water content significantly (p < 0.05). Both hypoxic and normoxic MSCs downregulated the expression of MMP9 and normalized AQP4 distribution to astrocyte end feet. Conclusion Our preliminary study showed that topical application of hypoxic MSCs suppressed both vasogenic and cytotoxic edema formation.


Sign in / Sign up

Export Citation Format

Share Document