organ repair
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Ali G. Turhan ◽  
Jinwook W. Hwang ◽  
Diana Chaker ◽  
Albert Tasteyre ◽  
Theodoros Latsis ◽  
...  

Progress made during the last decade in stem cell biology allows currently an unprecedented potential to translate these advances into the clinical applications and to shape the future of regenerative medicine. Organoid technology is amongst these major developments, derived from primary tissues or more recently, from induced pluripotent stem cells (iPSC). The use of iPSC technology offers the possibility of cancer modeling especially in hereditary cancers with germline oncogenic mutations. Similarly, it has the advantage to be amenable to genome editing with introduction of specific oncogenic alterations using CRISPR-mediated gene editing. In the field of regenerative medicine, iPSC-derived organoids hold promise for the generation of future advanced therapeutic medicinal products (ATMP) for organ repair. Finally, it appears that they can be of highly useful experimental tools to determine cell targets of SARS-Cov-2 infections allowing to test anti-Covid drugs. Thus, with the possibilities of genomic editing and the development of new protocols for differentiation toward functional tissues, it is expected that iPSC-derived organoid technology will represent also a therapeutic tool in all areas of medicine.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiao-Bing Fu

AbstractWound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly; however, the basic process of repair at the cell level is often neglected. Because the cell is the basic unit of organism structure and function; cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury. Then, damage to tissues and organs occurs with massive cell damage, apoptosis and even cell death. Thus, how to achieve the aim of perfect repair and regeneration? The basic process of tissue or organ repair and regeneration should involve repair of cells first, then tissues and organs. In this manuscript, it is my consideration about how to repair the cell first, then regenerate the tissues and organs.


Author(s):  
Siavash Raigani ◽  
Aylin Acun ◽  
Basak Uygun ◽  
Korkut Uygun ◽  
Heidi Yeh
Keyword(s):  

Author(s):  
Renato Paro ◽  
Ueli Grossniklaus ◽  
Raffaella Santoro ◽  
Anton Wutz

AbstractDuring regenerative processes, cells are required to restructure parts of a damaged or worn-out organ and tissue. Here, you will become acquainted with the strategies that organisms developed to provide the material for tissue and organ repair. On the one hand, somatic cells can become dedifferentiated to increase their developmental potential and produce the plasticity required to replace the entire cellular complexity of a damaged part. On the other hand, organisms retain organ-specific stem cells with a restricted developmental potency and use these to provide the “spare parts” for replacing damaged cells. In all cases, a substantial reprogramming of the epigenome of these cells accompanies the restructuring process. In vitro strategies have been developed to drive cells back to a pluripotent state, allowing a better understanding of the underlying chromatin adjustments and providing a rich source for cellular therapies.


Sign in / Sign up

Export Citation Format

Share Document