High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions

2017 ◽  
Vol 5 (44) ◽  
pp. 11339-11368 ◽  
Author(s):  
Liyuan Liang ◽  
Wanyi Xie ◽  
Shaoxi Fang ◽  
Feng He ◽  
Bohua Yin ◽  
...  

Single-walled carbon nanotubes (SWCNTs) have attracted great attention on account of their superior and tunable electrical properties for promising applications in low-cost and high-performance nano-electronics and thin-film devices.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Won Lee ◽  
Joon Young Cho ◽  
Mi Jeong Kim ◽  
Jung Hoon Kim ◽  
Jong Hwan Park ◽  
...  

AbstractSoft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm−1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950258 ◽  
Author(s):  
Danhui Zhang ◽  
Houbo Yang ◽  
Zhongkui Liu ◽  
Anmin Liu

Polynylon66, as a kind of important engineering plastics, is widely used in various fields. In this work, we studied the interfacial interactions between polynylon66 and single-walled carbon nanotubes (SWCNTs) using molecular dynamics (MD) simulations. The results showed that the polynylon66 could interact with the SWCNTs and the mechanism of interfacial interaction between polynylon66 and SWCNTs was also discussed. Furthermore, the morphology of polynylon66 adsorbed to the surface of SWCNTs was investigated by the radius of gyration. Influence factors such as the initial angle between polynylon66 chain and nanotube axis, SWCNT radius and length of polynylon66 on interfacial adhesion of single-walled carbon nanotube-polymer and the radius of gyration of the polymers were studied. These results will help to better understand the interfacial interaction between polymer and carbon nanotube (CNT) and also guide the fabrication of high performance polymer/carbon nanotube nanocomposites.


2016 ◽  
Vol 9 (3) ◽  
pp. 1095-1101 ◽  
Author(s):  
Jun Hu ◽  
Yuanchun Ji ◽  
Wei Chen ◽  
Carsten Streb ◽  
Yu-Fei Song

A universal one-step strategy for the periodic deposition of redox-active polyoxometalate nanocrystals on single-walled carbon nanotubes is reported, giving access to high-performance electrodes for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document