Enhancing the blinking fluorescence of single-molecule localization imaging by using a surface-plasmon-polariton-enhanced substrate

2018 ◽  
Vol 20 (43) ◽  
pp. 27245-27255 ◽  
Author(s):  
Fan-Ching Chien ◽  
Chun-Yu Lin ◽  
Gerald Abrigo

Single-molecule localization microscopy combined with the surface plasmon polariton-enhanced fluorescence of spontaneously blinking fluorophores was used to reduce the phototoxicity of biospecimens for single-molecule localization imaging.

Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3965-3975 ◽  
Author(s):  
Dmitry Yu. Fedyanin ◽  
Alexey V. Krasavin ◽  
Aleksey V. Arsenin ◽  
Anatoly V. Zayats

AbstractPlasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength λ and a mode volume of under λ3/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 μW and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single-molecule biosensing.


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


Sign in / Sign up

Export Citation Format

Share Document