Multiscale modeling of charge transfer in polymers with flexible backbones

2019 ◽  
Vol 21 (4) ◽  
pp. 1812-1819 ◽  
Author(s):  
Masahiro Sato ◽  
Akiko Kumada ◽  
Kunihiko Hidaka

In order to evaluate carrier transfer properties in polymers with flexible backbones, we have proposed a simplified multi-scale modeling approach combining molecular dynamics simulations, first-principles calculations and kinetic Monte Carlo simulations.

2000 ◽  
Vol 648 ◽  
Author(s):  
E. G. Wang ◽  
B. G. Liu ◽  
J. Wu ◽  
W. G. Zhu ◽  
Z. Zhang

AbstractA rich variety of two-dimensional patterns can be formed in the early stages of film growth. In this paper, we will show that, when a surfactant layer is used to mediate the growth, a counter-intuitive fractal-to-compact island shape transition can be induced by increasing deposition flux or decreasing growth temperature. Specifically, we introduce a reaction limited aggregation (RLA) theory, where the physical process controlling the island shape transition is the shielding effect of adatoms stuck to stable islands on incoming adatoms. Also discussed is the origin of a transition of compact islands from triangular to hexagonal then to inverted triangular in Pt (111) homoepitaxy with the presence of CO adsorbates. We will provide a coherent and unified picture for the interpretation of these intriguing observations based on kinetic Monte Carlo simulations, with energy barriers from first-principles calculations.


Author(s):  
Pınar Acar

This work addresses the integration of an analytical uncertainty quantification approach to multi-scale modeling of single-walled carbon nanotube (SWNT)-epoxy nanocomposites consisting of pristine systems. The computational modeling starts with the dendrimer growth approach, which is used to build an epoxy-SWNT network. Next, the molecular dynamics simulations are performed to obtain thermal and mechanical properties. The SWNT orientations are assumed to have natural stochasticity which is modeled by an analytical uncertainty algorithm. Next, the propagation of the uncertainties to the volume-averaged properties of the SWNT and nanocomposite is obtained. The uncertainties are shown to affect the macro-scale properties such as stiffness, thermal expansion, thermal conductivity and natural frequencies.


2014 ◽  
Author(s):  
M. M. Shahzamanian ◽  
T. Tadepalli ◽  
A. M. Rajendran ◽  
W. D. Hodo ◽  
R. Mohan ◽  
...  

Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


Sign in / Sign up

Export Citation Format

Share Document