Particulate photocatalyst sheets based on non-oxide semiconductor materials for water splitting under visible light irradiation

2018 ◽  
Vol 8 (15) ◽  
pp. 3918-3925 ◽  
Author(s):  
Takashi Hisatomi ◽  
Takahiro Yamamoto ◽  
Qian Wang ◽  
Takahiro Nakanishi ◽  
Tomohiro Higashi ◽  
...  

Photocatalyst sheets active in visible-light-driven water splitting, potentially under irradiation of up to 600 nm, are developed.

2015 ◽  
Vol 3 (36) ◽  
pp. 18622-18635 ◽  
Author(s):  
Susanginee Nayak ◽  
Lagnamayee Mohapatra ◽  
Kulamani Parida

Dispersion of exfoliated CN over the surface of exfoliated LDH composite materials, and its photocatalytic water splitting under visible-light irradiation.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48486-48491 ◽  
Author(s):  
Shuai Chen ◽  
Daniel L. Jacobs ◽  
Jingkun Xu ◽  
Yingxuan Li ◽  
Chuanyi Wang ◽  
...  

Self-assembled 1D nanofibers of donor–accepter type perylene diimides have been used for photocatalytic H2 production from water-splitting under visible-light irradiation.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hu Liu ◽  
Mengqi Shen ◽  
Peng Zhou ◽  
Zhi Guo ◽  
Xinyang Liu ◽  
...  

Developing an efficient single component photocatalyst for overall water splitting under visible-light irradiation is extremely challenging. Herein, we report a metal-free graphitic carbon nitride (g-CxN4)-based nanosheet photocatalyst (x = 3.2,...


RSC Advances ◽  
2014 ◽  
Vol 4 (88) ◽  
pp. 47615-47624 ◽  
Author(s):  
Ping Li ◽  
Chunbo Liu ◽  
Guoling Wu ◽  
Yang Heng ◽  
Shuang Lin ◽  
...  

In this paper, Fe-doped SrTiO3 (FSTO) photocatalysts were successfully prepared via a facile solvothermal method, and their photocatalytic activities for degrading tetracycline (TC) under visible light irradiation were examined.


Author(s):  
Zhao Zhang ◽  
Haohua Chen ◽  
Niklas Keller ◽  
Qin Xiong ◽  
Lei Liu ◽  
...  

A visible-light-driven oxidative 6π heterocycilization for the synthesis of structurally diverse π-conjugated polycyclic 1-aminoisoquinolines has been developed. The reaction proceeds under visible-light or sunshine, obviates photocatalyst and transition-metals, and features...


2017 ◽  
Vol 4 (10) ◽  
pp. 1691-1696 ◽  
Author(s):  
Mumei Han ◽  
Huibo Wang ◽  
Siqi Zhao ◽  
Lulu Hu ◽  
Hui Huang ◽  
...  

10%CoO/g-C3N4 exhibits good photocatalytic performance under visible light irradiation without any sacrificial reagents.


Sign in / Sign up

Export Citation Format

Share Document