scholarly journals Efficient synthesis of Ibrutinib chiral intermediate in high space-time yield by recombinant E. coli co-expressing alcohol dehydrogenase and glucose dehydrogenase

RSC Advances ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 2325-2331 ◽  
Author(s):  
Yitong Chen ◽  
Baodi Ma ◽  
Songshuang Cao ◽  
Xiaomei Wu ◽  
Yi Xu

A simple and efficient process for the synthesis of optically active (S)-N-boc-3-hydroxy piperidine was developed using the “designer cells” co-expressing alcohol dehydrogenase and glucose dehydrogenase.

2015 ◽  
Vol 5 (8) ◽  
pp. 4048-4054 ◽  
Author(s):  
Xue-Cheng Jiao ◽  
Jiang Pan ◽  
Guo-Chao Xu ◽  
Xu-Dong Kong ◽  
Qi Chen ◽  
...  

A novel 2-deoxyribose-5-phosphate aldolase (LbDERA) was identified from Lactobacillus brevis, with high activity, excellent thermostability and high tolerance against aldehyde substrates.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Langxing Liao ◽  
Yonghui Zhang ◽  
Yali Wang ◽  
Yousi Fu ◽  
Aihui Zhang ◽  
...  

Abstract Background Biosynthesis of l-tert-leucine (l-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of l-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. Results In this work, a novel fusion enzyme (GDH–R3–LeuDH) for the efficient biosynthesis of l-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH–R3–LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of l-tle by GDH–R3–LeuDH was all enhanced by twofold. Finally, the space–time yield of l-tle catalyzing by GDH–R3–LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). Conclusions It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize l-tle and reach the highest space–time yield up to now. These results demonstrated the great potential of the GDH–R3–LeuDH fusion enzyme for the efficient biosynthesis of l-tle.


Author(s):  
Lejian Zhang ◽  
Xiaoxiao Zhu ◽  
Xinping Wang ◽  
Chuan Shi

Anatase-free titanium silicalite-1 (TS-1) zeolite with high framework titanium content is highly required for catalysing selective oxidation reactions, while its synthesis generally suffers from cost, efficiency and environmental issues. Herein,...


2013 ◽  
Vol 15 (19) ◽  
pp. 4917-4919 ◽  
Author(s):  
Wen-Xia Zhang ◽  
Guo-Chao Xu ◽  
Lei Huang ◽  
Jiang Pan ◽  
Hui-Lei Yu ◽  
...  

ChemInform ◽  
2015 ◽  
Vol 46 (18) ◽  
pp. no-no
Author(s):  
Rui-Jie Chen ◽  
Gao-Wei Zheng ◽  
Yan Ni ◽  
Bu-Bing Zeng ◽  
Jian-He Xu

2020 ◽  
Author(s):  
Langxing Liao ◽  
Yonghui Zhang ◽  
Yali Wang ◽  
Yousi Fu ◽  
Aihui Zhang ◽  
...  

Abstract Background: Biosynthesis of L-tert-leucine (L-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of L-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully.Results: In this work, a novel fusion enzyme (GDH-R3-LeuDH) for the efficient biosynthesis of L-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH-R3-LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yeild of L-tle by GDH-R3-LeuDH was all enhanced by 2-fold. Finally, the space-time yield of L-tle catalyzing by GDH-R3-LeuDH whole cells could achieve 2136 g/L/d in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose).Conclusions: It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize L-tle and reach the highest space-time yield up to now. These results demonstrated the great potential of the GDH-R3-LeuDH fusion enzyme for the efficient biosynthesis of L-tle.


Sign in / Sign up

Export Citation Format

Share Document