Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries

2018 ◽  
Vol 6 (24) ◽  
pp. 11463-11470 ◽  
Author(s):  
Minghui He ◽  
Zhonghui Cui ◽  
Cheng Chen ◽  
Yiqiu Li ◽  
Xiangxin Guo

Modification of the garnet-type solid electrolyte with a 10 nm Sn thin-film improves the contact and wetting performance between the garnet and the lithium metal and, thus enables fast and reversible lithium transport across their interface by forming a self-limited, conductive Li–Sn intermediate layer.

2020 ◽  
pp. 6-22 ◽  
Author(s):  
Xufeng Yan ◽  
Weiqiang Han

All-solid-state batteries (ASSBs) have attracted much attention in recent years, due to their high energy density, excellent cycling performance, and superior safety property. As the key factor of all-solid-state batteries, solid electrolyte determines the performance of the batteries. Garnet-typed cubic Li7La3Zr2O12(LLZO) has been reported as the most promising solid electrolyte on the way to ASSBs. Thin film electrolyte could contribute to a higher energy density and a lower resistance in a battery. This short review exhibits the latest efforts on LLZO thin film and discusses the different preparation methods, together with their effects on characteristics and electrochemical performances of the solid electrolyte film.


2016 ◽  
Vol 285 ◽  
pp. 79-82 ◽  
Author(s):  
So Yubuchi ◽  
Yusuke Ito ◽  
Takuya Matsuyama ◽  
Akitoshi Hayashi ◽  
Masahiro Tatsumisago

2020 ◽  
Vol 8 (13) ◽  
pp. 6291-6302 ◽  
Author(s):  
Andrew L. Davis ◽  
Regina Garcia-Mendez ◽  
Kevin N. Wood ◽  
Eric Kazyak ◽  
Kuan-Hung Chen ◽  
...  

Investigation of interfacial degradation of Li10GeP2S12 (LGPS) electrolytes and the effect of ALD artificial SEI interlayers in lithium metal solid state batteries using a suite of operando microscopy and spectroscopy techniques.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Sign in / Sign up

Export Citation Format

Share Document