Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries

2019 ◽  
Vol 55 (53) ◽  
pp. 7703-7706 ◽  
Author(s):  
Bao Shen ◽  
Tian-Wen Zhang ◽  
Yi-Chen Yin ◽  
Zheng-Xin Zhu ◽  
Lei-Lei Lu ◽  
...  

A BNNSs coating can form a robust protective layer on a PEO-based electrolyte to suppress the growth of Li dendrites and improve the performance of solid-state Li metal batteries.

2019 ◽  
Author(s):  
Rick W. Dorn ◽  
Matthew J. Ryan ◽  
Tae-Hoon Kim ◽  
Tian Wei Goh ◽  
Patrick M. Heintz ◽  
...  

Hexagonal boron nitride nanosheets (h-BNNS), the isoelectric analog to graphene, have received much attention over the past decade due to their high thermal oxidative resistance, high bandgap, catalytic activity and low cost. The molecular functional groups that terminate boron and nitrogen zigzag and/or armchair edges directly affect their chemical, physical and electronic properties. However, an understanding of the exact molecular edge termination present in h-BNNS is lacking. Here, high-resolution magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy and plane-wave density-functional theory (DFT) calculations are used to determine the exact molecular edge termination in exfoliated h-BNNS. 1H→11B cross-polarization MAS (CPMAS) SSNMR spectra of h-BNNS revealed multiple hydroxyl/oxygen coordinate boron edge sites that were not detectable in direct excitation experiments. A dynamic nuclear polarization (DNP)-enhanced 1H→15N CPMAS spectrum of h-BNNS displayed four distinct 15N resonances while a 2D 1H{14N} dipolar-HMQC spectrum revealed three distinct 14N environments. Plane-wave DFT calculations were used to construct model edge structures and predict the corresponding 11B, 14N and 15N SSNMR spectra. Comparison of the experimental and predicted SSNMR spectra confirms that zigzag and armchair edges with both amine and boron hydroxide/oxide termination are present. The detailed characterization of h-BNNS molecular edge termination will provide usefulness for many material science applications and the techniques outlined here should be applicable to comprehensively understand the molecular edge terminations in other 2D materials.


2020 ◽  
Vol 44 (37) ◽  
pp. 15919-15927
Author(s):  
Lignesh Durai ◽  
Pinki Yadav ◽  
Harita Pant ◽  
Vadali V. S. S. Srikanth ◽  
Sushmee Badhulika

Label-free, ultra-selective sensing of β-carotene using hBN nanosheets.


2018 ◽  
Vol 10 ◽  
pp. 24-31 ◽  
Author(s):  
Shuanghao Zheng ◽  
Weiwei Lei ◽  
Jieqiong Qin ◽  
Zhong-Shuai Wu ◽  
Feng Zhou ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1955
Author(s):  
Chan Wang ◽  
Kuan Hu ◽  
Ying Liu ◽  
Ming-Rong Zhang ◽  
Zhiwei Wang ◽  
...  

All-solid-state supercapacitors have gained increasing attention as wearable energy storage devices, partially due to their flexible, safe, and lightweight natures. However, their electrochemical performances are largely hampered by the low flexibility and durability of current polyvinyl alcohol (PVA) based electrolytes. Herein, a novel polyvinyl alcohol-polyethyleneimine (PVA-PEI) based, conductive and elastic hydrogel was devised as an all-in-one electrolyte platform for wearable supercapacitor (WSC). For proof-of-concept, we assembled all-solid-state supercapacitors based on boron nitride nanosheets (BNNS) intercalated graphene electrodes and PVA-PEI based gel electrolyte. Furthermore, by varying the electrolyte ions, we observed synergistic effects between the hydrogel and the electrode materials when KOH was used as electrolyte ions, as the Graphene/BNNS@PVA-PEI-KOH WSCs exhibited a significantly improved areal capacitance of 0.35 F/cm2 and a smaller ESR of 6.02 ohm/cm2. Moreover, due to the high flexibility and durability of the PVA-PEI hydrogel electrolyte, the developed WSCs behave excellent flexibility and cycling stability under different bending states and after 5000 cycles. Therefore, the conductive, yet elastic, PVA-PEI hydrogel represents an attractive electrolyte platform for WSC, and the Graphene/BNNS@PVA-PEI-KOH WSCs shows broad potentials in powering wearable electronic devices.


2019 ◽  
Author(s):  
Rick W. Dorn ◽  
Matthew J. Ryan ◽  
Tae-Hoon Kim ◽  
Tian Wei Goh ◽  
Patrick M. Heintz ◽  
...  

Hexagonal boron nitride nanosheets (h-BNNS), the isoelectric analog to graphene, have received much attention over the past decade due to their high thermal oxidative resistance, high bandgap, catalytic activity and low cost. The molecular functional groups that terminate boron and nitrogen zigzag and/or armchair edges directly affect their chemical, physical and electronic properties. However, an understanding of the exact molecular edge termination present in h-BNNS is lacking. Here, high-resolution magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy and plane-wave density-functional theory (DFT) calculations are used to determine the exact molecular edge termination in exfoliated h-BNNS. 1H→11B cross-polarization MAS (CPMAS) SSNMR spectra of h-BNNS revealed multiple hydroxyl/oxygen coordinate boron edge sites that were not detectable in direct excitation experiments. A dynamic nuclear polarization (DNP)-enhanced 1H→15N CPMAS spectrum of h-BNNS displayed four distinct 15N resonances while a 2D 1H{14N} dipolar-HMQC spectrum revealed three distinct 14N environments. Plane-wave DFT calculations were used to construct model edge structures and predict the corresponding 11B, 14N and 15N SSNMR spectra. Comparison of the experimental and predicted SSNMR spectra confirms that zigzag and armchair edges with both amine and boron hydroxide/oxide termination are present. The detailed characterization of h-BNNS molecular edge termination will provide usefulness for many material science applications and the techniques outlined here should be applicable to comprehensively understand the molecular edge terminations in other 2D materials.


RSC Advances ◽  
2020 ◽  
Vol 10 (25) ◽  
pp. 14785-14793
Author(s):  
Hossein Tafrishi ◽  
Sadegh Sadeghzadeh ◽  
Fatemeh Molaei ◽  
Hossein Siavoshi

Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material.


Sign in / Sign up

Export Citation Format

Share Document