Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides

2020 ◽  
Vol 22 (5) ◽  
pp. 2908-2916 ◽  
Author(s):  
Yasumitsu Suzuki ◽  
Kazuyuki Watanabe

Time-dependent density functional theory has been applied to the calculation of absorption spectra for two dimensional atomic layer materials: mono-layer and bi-layer hexagonal boron nitride and mono-layer transition metal dichalcogenides.

Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1215
Author(s):  
Shimeles Shumi Raya ◽  
Abu Saad Ansari ◽  
Bonggeun Shong

Due to their atomic thicknesses and semiconducting properties, two-dimensional transition metal dichalcogenides (TMDCs) are gaining increasing research interest. Among them, Hf- and Zr-based TMDCs demonstrate the unique advantage that their oxides (HfO2 and ZrO2) are excellent dielectric materials. One possible method to precisely tune the material properties of two-dimensional atomically thin nanomaterials is to adsorb molecules on their surfaces as non-bonded dopants. In the present work, the molecular adsorption of NO2 and NH3 on the two-dimensional trigonal prismatic (1H) and octahedral (1T) phases of Hf and Zr dichalcogenides (S, Se, Te) is studied using dispersion-corrected periodic density functional theory (DFT) calculations. The adsorption configuration, energy, and charge-transfer properties during molecular adsorption are investigated. In addition, the effects of the molecular dopants (NH3 and NO2) on the electronic structure of the materials are studied. It was observed that the adsorbed NH3 donates electrons to the conduction band of the Hf (Zr) dichalcogenides, while NO2 receives electrons from the valance band. Furthermore, the NO2 dopant affects than NH3 significantly. The resulting band structure of the molecularly doped Zr and Hf dichalcogenides are modulated by the molecular adsorbates. This study explores, not only the properties of the two-dimensional 1H and 1T phases of Hf and Zr dichalcogenides (S, Se, Te), but also tunes their electronic properties by adsorbing non-bonded dopants.


2017 ◽  
Vol 19 (35) ◽  
pp. 23982-23989 ◽  
Author(s):  
Jie Yang ◽  
Ruge Quhe ◽  
Shenyan Feng ◽  
Qiaoxuan Zhang ◽  
Ming Lei ◽  
...  

Interfacial properties of β12phase borophene contacts with other common two-dimensional materials (transition-metal dichalcogenides, group IV-enes and group V-enes) have been systematically studied using a density functional theory (DFT) method.


Sign in / Sign up

Export Citation Format

Share Document