electron wave packet
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 21)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Masakazu Muraguchi ◽  
Ryuho Nakaya ◽  
Souma Kawahara ◽  
Yoshitaka Itoh ◽  
Tota Suko

Abstract The model to predict the electron transmission probability from the random impurity distribution in a two-dimensional nanowire system by combining the time evolution of the electron wave function and machine learning is proposed. We have shown that the intermediate state of the time evolution calculation is a great advantage for efficient modeling by machine learning. The features for machine learning are extracted by analyzing the time variation of the electron density distribution using time evolution calculations. Consequently, the prediction error of the model is improved by performing machine learning based on the features. The proposed method provides a useful perspective for analyzing the motion of electrons in nanoscale semiconductors.


2021 ◽  
Vol 19 (1) ◽  
pp. 016001
Author(s):  
K B Oganesyan ◽  
M Hnatic ◽  
P Kopchancky

Abstract The theory of free electron lasers (FELs) is well developed both in quantum mechanical and classical approaches. In strophotron FEL, in classical approach, resonance frequency and the gain are strongly dependent on initial parameters of electron beam. In the quantum mechanical approach considered by Zaretsky and Nersesov (1983 JETP 57 518), there is no such dependence. The correspondence between the quantum mechanical and classical approaches in a relativistic strophotron FEL is discussed. We study the initial distribution of electrons over vibrational levels determined by the expansion coefficients in relativistic strophotron FEL. It is shown, (presenting electron wave function in the form of Gaussian wave packet), that the number of the vibrational level most efficiently populated at the initial moment of time can be expressed in terms of the initial parameters of the electron beam.


Author(s):  
Lijuan Jia ◽  
Long Xu ◽  
Peng Zhang ◽  
Libin Fu

Abstract We investigate the time-dependent electron wave packet in a one-dimensional geometry with the potential bent by a homogeneous external field. Based on the behaviors of the wave packet over time, we observe a crossover time. After this crossover time, the temporal evolution of the wave packet comes into a new regime, where the wave packet evolves in a self-similar structure. To establish the time scale of this crossover quantitatively, we utilize the Loschmidt Echo function, through which the time at which the crossover occurs can be extracted. We also find the time of the maximum ionization velocity can be comparable with the semi-classical tunneling delay time.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yindong Huang ◽  
Jing Zhao ◽  
Zheng Shu ◽  
Yalei Zhu ◽  
Jinlei Liu ◽  
...  

Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the electronic dynamics in real time with attosecond-temporal and atomic-spatial precision. Here, we present molecular attosecond interferometry that enables the in situ manipulation of holes in carbon dioxide molecules via the interferometry of the phase-locked electrons (propagating in opposite directions) of a laser-triggered rotational wave packet. The joint measurement on high-harmonic and terahertz spectroscopy (HATS) provides a unique tool for understanding electron dynamics from picoseconds to attoseconds. The optimum phases of two-color pulses for controlling the electron wave packet are precisely determined owing to the robust reference provided with the terahertz pulse generation. It is noteworthy that the contribution of HOMO-1 and HOMO-2 increases reflecting the deformation of the hole as the harmonic order increases. Our method can be applied to study hole dynamics of complex molecules and electron correlations during the strong-field process. The threefold control through molecular alignment, laser polarization, and the two-color pulse phase delay allows the precise manipulation of the transient hole paving the way for new advances in attochemistry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takehito Yokoyama

AbstractTransverse current due to Berry curvature in phase space is formulated based on the Boltzmann equations with the semiclassical equations of motion for an electron wave packet. It is shown that the Hall effect due to the phase space Berry curvature is absent because the contributions from “anomalous velocity” and “effective Lorentz force” are completely cancelled out.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
T. Kaneyasu ◽  
Y. Hikosaka ◽  
M. Fujimoto ◽  
H. Iwayama ◽  
M. Katoh

2020 ◽  
Vol 16 (3) ◽  
Author(s):  
Ya-Nan Qin ◽  
Min Li ◽  
Yudi Feng ◽  
Siqiang Luo ◽  
Yueming Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document