Effect of anion reorientation on proton mobility in the solid acids family CsHyXO4 (X = S, P, Se, y = 1, 2) from ab initio molecular dynamics simulations

2020 ◽  
Vol 22 (19) ◽  
pp. 10738-10752 ◽  
Author(s):  
Christian Dreßler ◽  
Daniel Sebastiani

The high temperature phases of the solid acids CsHSeO4, CsHSO4 and CsH2PO4 show extraordinary high proton conductivities, which are enabled by the interplay of high proton transfer rates and frequent anion reorientation.

Author(s):  
Boris Merinov ◽  
Sergey Morozov

The proton transport mechanism in superprotonic phases of solid acids is a subject of experimental and theoretical studies for a number of years. Despite this, details of the mechanism still...


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5206
Author(s):  
Dmitry Bocharov ◽  
Inga Pudza ◽  
Konstantin Klementiev ◽  
Matthias Krack ◽  
Alexei Kuzmin

Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced anharmonicity of Zn–O bonding was observed above 600 K. The values of mean-square relative displacements and mean-square displacements for Zn–O and Zn–Zn atom pairs were obtained as a function of interatomic distance and temperature. They were used to calculate the characteristic Einstein temperatures. The temperature dependences of the O–Zn–O and Zn–O–Zn bond angle distributions were also determined.


Sign in / Sign up

Export Citation Format

Share Document