Boronic acid catalysis

2019 ◽  
Vol 48 (13) ◽  
pp. 3475-3496 ◽  
Author(s):  
Dennis G. Hall

Although boronic acids are recognized primarily for their utility as reagents in transition metal-catalyzed transformations, other applications are emerging, including their use as reaction catalysts.

Synthesis ◽  
2021 ◽  
Author(s):  
Heather Lam ◽  
Mark Lautens ◽  
Xavier Abel-Snape ◽  
Martin F. Köllen

Abstract(4+3)-Annulations are incredibly versatile reactions which combine a 4-atom synthon and a 3-atom synthon to form both 7-membered carbocycles as well as heterocycles. We have previously reviewed transition-metal-catalyzed (4+3)-annulations. In this review, we will cover examples involving bases, NHCs, phosphines, Lewis and Brønsted acids as well as some rare examples of boronic acid catalysis and photocatalysis. In analogy to our previous review, we exclude annulations involving cyclic dienes like furan, pyrrole, cyclohexadiene or cyclopentadiene, as Chiu, Harmata, Fernándes and others have recently published reviews encompassing such substrates. We will however discuss the recent additions (2010–2020) to the literature on (4+3)-annulations involving other types of 4-atom-synthons.1 Introduction2 Bases3 Annulations Using N-Heterocyclic Carbenes3.1 N-Heterocyclic Carbenes (NHCs)3.2 N-Heterocyclic Carbenes and Base Dual-Activation4 Phosphines5 Acids5.1 Lewis Acids5.2 Brønsted Acids6 Boronic Acid Catalysis and Photocatalysis7 Conclusion


2021 ◽  
Author(s):  
Yong Luo ◽  
Hao Ding ◽  
Jing-Song Zhen ◽  
Xian Du ◽  
Xiao-Hong Xu ◽  
...  

A novel arylation of sulfonamides with boronic acids to afford various diaryl sulfones via visible light-mediated N–S bond cleavage other than typical transition-metal-catalyzed C(O)–N bond activation is described. This methodology...


2020 ◽  
Vol 7 (8) ◽  
pp. 1022-1060 ◽  
Author(s):  
Wenbo Ma ◽  
Nikolaos Kaplaneris ◽  
Xinyue Fang ◽  
Linghui Gu ◽  
Ruhuai Mei ◽  
...  

This review summarizes recent advances in C–S and C–Se formations via transition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2015 ◽  
Vol 20 (5) ◽  
pp. 471-511 ◽  
Author(s):  
Satyasheel Sharma ◽  
Neeraj Kumar Mishra ◽  
Youngmi Shin ◽  
In Su Kim

Sign in / Sign up

Export Citation Format

Share Document