scholarly journals Recent Advances in Transition-Metal-Free (4+3)-Annulations

Synthesis ◽  
2021 ◽  
Author(s):  
Heather Lam ◽  
Mark Lautens ◽  
Xavier Abel-Snape ◽  
Martin F. Köllen

Abstract(4+3)-Annulations are incredibly versatile reactions which combine a 4-atom synthon and a 3-atom synthon to form both 7-membered carbocycles as well as heterocycles. We have previously reviewed transition-metal-catalyzed (4+3)-annulations. In this review, we will cover examples involving bases, NHCs, phosphines, Lewis and Brønsted acids as well as some rare examples of boronic acid catalysis and photocatalysis. In analogy to our previous review, we exclude annulations involving cyclic dienes like furan, pyrrole, cyclohexadiene or cyclopentadiene, as Chiu, Harmata, Fernándes and others have recently published reviews encompassing such substrates. We will however discuss the recent additions (2010–2020) to the literature on (4+3)-annulations involving other types of 4-atom-synthons.1 Introduction2 Bases3 Annulations Using N-Heterocyclic Carbenes3.1 N-Heterocyclic Carbenes (NHCs)3.2 N-Heterocyclic Carbenes and Base Dual-Activation4 Phosphines5 Acids5.1 Lewis Acids5.2 Brønsted Acids6 Boronic Acid Catalysis and Photocatalysis7 Conclusion

2016 ◽  
Vol 52 (59) ◽  
pp. 9283-9286 ◽  
Author(s):  
Hayden A. Sharma ◽  
M. Todd Hovey ◽  
Karl A. Scheidt

A convergent, transition-metal-free synthesis of 2-aryl-azaindoles enabled by carbene catalysis is reported with high yields and a wide substrate scope featuring previously inaccessible azaindoles.


2019 ◽  
Vol 48 (13) ◽  
pp. 3475-3496 ◽  
Author(s):  
Dennis G. Hall

Although boronic acids are recognized primarily for their utility as reagents in transition metal-catalyzed transformations, other applications are emerging, including their use as reaction catalysts.


2017 ◽  
Vol 53 (75) ◽  
pp. 10366-10369 ◽  
Author(s):  
Shaoyu Mai ◽  
Changqing Rao ◽  
Ming Chen ◽  
Jihu Su ◽  
Jiangfeng Du ◽  
...  

Novel catalytic systems consisting of cationic gold complexes, N-hydroxyphthalimide (NHPI), and transition-metal-based Lewis acids have been developed for the one-pot synthesis of functionalized oxazoles.


Synthesis ◽  
2021 ◽  
Author(s):  
Leonid Fershtat ◽  
Fedor Teslenko

Five-membered heterocyclic N-oxides attracted special attention due to their strong application potential in medicinal chemistry and advanced materials science. In this regard, novel methods for their synthesis and functionalization are constantly required. In this short review, recent state-of-the-art achievements in the chemistry of isoxazoline N-oxides, 1,2,3-triazole 1-oxides and 1,2,5-oxadiazole 2-oxides are briefly summarized. Main routes to transition-metal-catalyzed and metal-free functionalization protocols along with mechanistic considerations are outlined. Transformation patterns of the hetarene N-oxide rings as precursors to other nitrogen heterocyclic systems are also presented.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 101 ◽  
Author(s):  
Yanmei Wen ◽  
Chunmei Deng ◽  
Jianying Xie ◽  
Xinhuang Kang

Diboron reagents have been traditionally regarded as “Lewis acids”, which can react with simple Lewis base to create a significant nucleophilic character in one of boryl moieties. In particular, bis(pinacolato)diboron (B2pin2) reacts with simple Lewis bases, such as N-heterocyclic carbenes (NHCs), phosphines and alkoxides. This review focuses on the application of trivalent nucleophilic boryl synthon in the selective preparation of organoboron compounds, mainly through metal-free catalytic diboration and the β-boration reactions of alkynes and alkenes.


Synthesis ◽  
2018 ◽  
Vol 50 (11) ◽  
pp. 2131-2149 ◽  
Author(s):  
Kamal Kapoor ◽  
Parthasarathi Das ◽  
Rajni Khajuria ◽  
Sk. Rasheed ◽  
Chhavi Khajuria

Pyrido[1,2-a]benzimidazole is one of the most important azaheterocyclic compounds consisting of three fused aromatic rings. Molecules containing this core have displayed a wide range of applications in the field of medicinal chemistry. The synthesis of pyrido[1,2-a]benzimidazole and its derivatives has attracted organic chemists because of its tremendous utility in interdisciplinary branches of chemistry. In this context, this review discusses the main advances in the synthesis of pyrido[1,2-a]benzimidazoles via metal-mediated and metal-free reactions from 2000 to 2016.1 Introduction2 Synthetic Approaches to Pyrido[1,2-a]benzimidazoles2.1 Type I: Transition-Metal-Catalyzed Methods2.2 Type II: Metal-Free Approaches3 Conclusion


Synthesis ◽  
2020 ◽  
Vol 52 (17) ◽  
pp. 2427-2449 ◽  
Author(s):  
Mark Lautens ◽  
Heather Lam

A (4+3)-cycloaddition combines a four-atom synthon and three-atom synthon to form seven-membered rings. In the past decade, many improvements have been made to this class of cycloaddition, including excellent diastereo- and enantioselectivities, both intra- and intermolecularly. Through the strategic use of transition-metal catalysts, acids, bases, and organocatalysts, it is possible to perform the cycloaddition on a variety of substrates, generating novel seven-membered rings. With these advances, (4+3)-cycloaddition has also been applied to the synthesis of biologically relevant compounds and natural products. We exclude the cycloadditions of cyclic dienes such as furan, pyrrole, cyclohexadiene or cyclopentadiene as Chiu, Harmata, Mascareñas­ and others have recently published thorough reviews on that topic. We will however discuss the recent additions (2009–2020) to the literature for the (4+3)-cycloadditions involving other types of four-atom synthons.1 Introduction2 Rhodium2.1 Cyclopropanation/Cope Rearrangement2.2 C–H activation3 Gold, Silver4 Copper5 Palladium, Platinum, Iridium6 Dual-Activation7 Conclusion


Sign in / Sign up

Export Citation Format

Share Document