Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution

2019 ◽  
Vol 43 (24) ◽  
pp. 9711-9724 ◽  
Author(s):  
Rui Liu ◽  
Pothiappan Vairaprakash ◽  
Jonathan S. Lindsey

Profound morphological and fluorogenic changes ensue upon binding of a zinc ion by two polymers, each of which bears a single dipyrrin at one terminus, forming the bis(dipyrrinato)Zn(ii) complex.

1999 ◽  
Vol 6 (6) ◽  
pp. 321-328 ◽  
Author(s):  
Bin Song ◽  
Jing Zhao ◽  
Fridrich Gregáň ◽  
Nadja Prónayová ◽  
S. Ali A. Sajadi ◽  
...  

The stability constants of the 1:1 complexes formed between methylphosphonylphosphate (MePP3-), CH3P(O)2--O-PO32- , and Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+,​ or Cd2+ (M2+) were determined by potentiometric pH titration in aqueous solution (25 C° ; l = 0.1 M, NaNO3 ). Monoprotonated M(H;MePP) complexes play only a minor role. Based on previously established correlations for M2+ -diphosphate monoester complex-stabilities and diphosphate monoester β-group. basicities, it is shown that the M(Mepp)- complexes for Mg2+ and the ions of the second half of the 3d series, including Zn2+ and Cd2+, are on average by about 0.15 log unit more stable than is expected based on the basicity of the terminal phosphate group in MePP3-. In contrast, Ba(Mepp)- and Sr(Mepp)- are slightly less stable, whereas the stability for Ca(Mepp)- is as expected, based on the mentioned correlation. The indicated increased stabilities are explained by an increased basicity of the phosphonyl group compared to that of a phosphoryl one. For the complexes of the alkaline earth ions, especially for Ba2+, it is suggested that outersphere complexation occurs to some extent. However, overall the M(Mepp)- complexes behave rather as expected for a diphosphate monoester ligand.


1988 ◽  
Vol 66 (5) ◽  
pp. 1194-1198 ◽  
Author(s):  
Oswald S. Tee ◽  
N. Rani Iyengar

Bromide ion induced debromination of the anion of 4-bromo-4-methyl-2,5-cyclohexadienone-2-carboxylic acid (1) is catalyzed by cupric ions and ferric ions. Similarly, the enolization of the anion of the benzocyclohexadienone 3, which is formed during the bromination of 1-naphthol-2-carboxylic acid, is catalyzed by some metal ions. The origin of the catalysis in these reactions is strong metal ion binding to the incipient dianion products that are of the salicylate type. Evidence for this is that the efficiency of the metal (and hydrogen) ion catalysis parallels the stability of the analogous complexes with the salicylate dianion.


1992 ◽  
Vol 31 (26) ◽  
pp. 5588-5596 ◽  
Author(s):  
Yoshiaki Kinjo ◽  
Liangnian Ji ◽  
Nicolas A. Corfu ◽  
Helmut Sigel

1998 ◽  
Vol 31 (26) ◽  
pp. 9201-9205 ◽  
Author(s):  
Yoshi Okamoto ◽  
T. K. Kwei ◽  
Drahomír Vyprachtický

Sign in / Sign up

Export Citation Format

Share Document