Inhibiting polysulfide shuttling using dual-functional nanowire/nanotube modified layers for highly stable lithium–sulfur batteries

2019 ◽  
Vol 43 (37) ◽  
pp. 14708-14713 ◽  
Author(s):  
Yizhou Wang ◽  
Wenhui Liu ◽  
Ruiqing Liu ◽  
Peifeng Pan ◽  
Liyao Suo ◽  
...  

Dual-functional MnO2 nanowire/CNT modified layers were prepared to inhibit the polysulfide shuttle effect utilizing their strong adsorption capability and high conductivity.

ACS Omega ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 16465-16471 ◽  
Author(s):  
Jin Hong Lee ◽  
Jisoo Kang ◽  
Seung-Wan Kim ◽  
Willy Halim ◽  
Margaret W. Frey ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 255
Author(s):  
Ben Hu ◽  
Bing Ding ◽  
Chong Xu ◽  
Zengjie Fan ◽  
Derong Luo ◽  
...  

The shuttling effect of polysulfides is one of the major problems of lithium–sulfur (Li–S) batteries, which causes rapid capacity fading during cycling. Modification of the commercial separator with a functional interlayer is an effective strategy to address this issue. Herein, we modified the commercial Celgard separator of Li–S batteries with one-dimensional (1D) covalent triazine framework (CTF) and a carbon nanotube (CNT) composite as a functional interlayer. The intertwined CTF/CNT can provide a fast lithium ionic/electronic transport pathway and strong adsorption capability towards polysulfides. The Li–S batteries with the CTF/CNT/Celgard separator delivered a high initial capacity of 1314 mAh g−1 at 0.1 C and remained at 684 mAh g−1 after 400 cycles−1 at 1 C. Theoretical calculation and static-adsorption experiments indicated that the triazine ring in the CTF skeleton possessed strong adsorption capability towards polysulfides. The work described here demonstrates the potential for CTF-based permselective membranes as separators in Li–S batteries.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Haisheng Han ◽  
Tong Wang ◽  
Yongguang Zhang ◽  
Arailym Nurpeissova ◽  
Zhumabay Bakenov

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2).


2020 ◽  
Vol 8 (6) ◽  
pp. 3027-3034 ◽  
Author(s):  
Jia Jin ◽  
Wenlong Cai ◽  
Jingsheng Cai ◽  
Yuanlong Shao ◽  
Yingze Song ◽  
...  

A self-supported and binder-free CoP@G/CC-S cathode affording high conductivity, a suppressed shuttle effect and favorable mechanical robustness enables high-performance flexible Li–S batteries for practical applications.


2021 ◽  
Vol 13 (16) ◽  
pp. 9473
Author(s):  
Salimeh Gohari ◽  
Vaclav Knap ◽  
Mohammad Reza Yaftian

Much attention has been paid to rechargeable lithium-sulfur batteries (Li–SBs) due to their high theoretical specific capacity, high theoretical energy density, and affordable cost. However, their rapid c fading capacity has been one of the key defects in their commercialization. It is believed that sulfuric cathode degradation is driven mainly by passivation of the cathode surface by Li2S at discharge, polysulfide shuttle (reducing the amount of active sulfur at the cathode, passivation of anode surface), and volume changes in the sulfuric cathode. These degradation mechanisms are significant during cycling, and the polysulfide shuttle is strongly present during storage at a high state-of-charge (SOC). Thus, storage at 50% SOC is used to evaluate the effect of the remaining degradation processes on the cell’s performance. In this work, unlike most of the other previous observations that were performed at small-scale cells (coin cells), 3.4 Ah pouch Li–SBs were tested using cycling and calendar aging protocols, and their performance indicators were analyzed. As expected, the fade capacity of the cycling aging cells was greater than that of the calendar aging cells. Additionally, the measurements for the calendar aging cells indicate that, contrary to the expectation of stopping the solubility of long-chain polysulfides and not attending the shuttle effect, these phenomena occur continuously under open-circuit conditions.


2018 ◽  
Vol 6 (6) ◽  
pp. 7545-7557 ◽  
Author(s):  
Manfang Chen ◽  
Shu Zhao ◽  
Shouxin Jiang ◽  
Cheng Huang ◽  
Xianyou Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1531
Author(s):  
Haoxian Chen ◽  
Jiayi Wang ◽  
Yan Zhao ◽  
Qindan Zeng ◽  
Guofu Zhou ◽  
...  

The severe shuttle effect of soluble polysulfides hinders the development of lithium–sulfur batteries. Herein, we develop a three-dimensionally ordered macro/mesoporous (3DOM) Nb2O5/Nb4N5 heterostructure, which combines the strong adsorption of Nb2O5 and remarkable catalysis effect of Nb4N5 by the promotion “adsorption-transformation” mechanism in sulfur reaction. Furthermore, the high electrocatalytic activity of Nb4N5 facilitates ion/mass transfer during the charge/discharge process. As a result, cells with the S-Nb2O5/Nb4N5 electrode delivered outstanding cycling stability and higher discharge capacity than its counterparts. Our work demonstrates a new routine for the multifunctional sulfur host design, which offers great potential for commercial high-performance lithium–sulfur batteries.


Sign in / Sign up

Export Citation Format

Share Document