A type of novel Weyl semimetal candidate: layered transition metal monochalcogenides Mo2XY (X, Y = S, Se, Te, X ≠ Y)

Nanoscale ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 4602-4611 ◽  
Author(s):  
Lijun Meng ◽  
Yizhi Li ◽  
Jiafang Wu ◽  
LingLing Zhao ◽  
Jianxin Zhong

Based on ab initio calculations and the Wannier-based tight-binding method, we studied the topological electronic properties and strain modulation of transition metal monochalcogenides (TMM) Mo2XY (X, Y = S, Se, Te, X ≠ Y).

2019 ◽  
Vol 7 (39) ◽  
pp. 12151-12159 ◽  
Author(s):  
Lijun Meng ◽  
Jiafang Wu ◽  
Yizhi Li ◽  
Jianxin Zhong

We investigated the topological properties of hexagonal transition metal monochalcogenides (TMMs) MoTe and WTe by combining first-principles calculations, the Wannier-based tight-binding method and the low energy k·p effective model.


2017 ◽  
Vol 22 (1) ◽  
pp. 41-50
Author(s):  
Ram Prasad Sedhain ◽  
Gopi Chandra Kaphle

Transition metal di-chalcogenides (MX2) M=(Mo, W) and X=(S, Se) in bulk state are of great interest due to their diverse applications in the field of modern technology as well as to understand the fundamental aspect of Physics. We performed structural and electronic properties of selected systems using density functional theory implemented in Tight Binding Linear Muffin- tin Orbital (TBLMTO) approach with subsequent refinement. The structural optimization is performed through energy minimization process and lattice parameters of optimized structures for MoS2, MoSe2, WS2 and WSe2 are found to be 3.20Å, 3.34Å, 3.27Å and 3.34Å respectively, which are within the error bar less than 5% with experimental values. The band gaps for all TMDCs are found to be of indirect types with semiconducting behaviours. The values of band gap of MoS2, MoSe2, WS2 and WSe2 in bulk state are found to be 1.16eV, 108eV, 1.50eV and 1.29eV respectively which are comparable with experimental and previously calculated data. Due to the symmetric nature of up spin and down spin channels of Density of States (DOS) all the systems selected are found to be non magnetic. However it fully supports the results obtained from band structure calculations. The potential and charge distributions plots support the results. The charge density plots reveals the covalent nature of bond in (100) plane. However (110) plane shows mixed types of bonding.Journal of Institute of Science and TechnologyVolume 22, Issue 1, July 2017, page: 41-50


2020 ◽  
Author(s):  
Hugo Souza ◽  
Antonio Chaves Neto ◽  
Francisco Sousa ◽  
Rodrigo Amorim ◽  
Alexandre Reily Rocha ◽  
...  

In this work, we investigate the effects of building block separation of Phenylalanine-Tryptophan nanotube induced by the confined water molecules on the electronic properties using density-functional theory based tight-binding method. <div><br></div>


1991 ◽  
Vol 234 ◽  
Author(s):  
P. Pecheur ◽  
G. Toussaint

ABSTRACTThe electronic structure of Ru2Si3 has been calculated with the empirical tight binding method and the recursion procedure. The calculation strongly indicates that there exists a gap in the structure, which makes Ru2Si3 semiconducting, as found experimentally and explains the stability of the chimney-ladder phases for a valence electron concentration per transition metal atom smaller than 14.


2021 ◽  
Author(s):  
Na Qin ◽  
Xian Du ◽  
Yangyang Lv ◽  
Lu Kang ◽  
Zhongxu Yin ◽  
...  

Abstract Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using Angle-Resolved Photoemission Spectroscopy and ab initio calculation, we investigate the electronic structure of Cu2TlX 2 (X = Se, Te), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu2TlSe2 to a semimetal in Cu2TlTe2, suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin-orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin-orbit coupling.


Sign in / Sign up

Export Citation Format

Share Document