Dirac–Weyl semimetal phase in noncentrosymmetric transition metal monochalcogenides MoTe and WTe

2019 ◽  
Vol 7 (39) ◽  
pp. 12151-12159 ◽  
Author(s):  
Lijun Meng ◽  
Jiafang Wu ◽  
Yizhi Li ◽  
Jianxin Zhong

We investigated the topological properties of hexagonal transition metal monochalcogenides (TMMs) MoTe and WTe by combining first-principles calculations, the Wannier-based tight-binding method and the low energy k·p effective model.

Nanoscale ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 4602-4611 ◽  
Author(s):  
Lijun Meng ◽  
Yizhi Li ◽  
Jiafang Wu ◽  
LingLing Zhao ◽  
Jianxin Zhong

Based on ab initio calculations and the Wannier-based tight-binding method, we studied the topological electronic properties and strain modulation of transition metal monochalcogenides (TMM) Mo2XY (X, Y = S, Se, Te, X ≠ Y).


Nanoscale ◽  
2019 ◽  
Vol 11 (39) ◽  
pp. 18358-18366 ◽  
Author(s):  
Lijun Meng ◽  
Jiafang Wu ◽  
Jianxin Zhong ◽  
Rudolf A. Römer

We investigate the topological properties of the Janus superlattices WTeS and WTeSe by first-principles methods and Wannier-based tight-binding Hamiltonians.


1997 ◽  
Vol 491 ◽  
Author(s):  
D. A. Papaconstantopoulos ◽  
M. J. Mehl ◽  
S. C. Erwin ◽  
M. R. Pederson

ABSTRACTWe demonstrate that our tight-binding method - which is based on fitting the energy bands and the total energy of first-principles calculations as a function of volume - can be easily extended to accurately describe carbon and silicon. We present equations of state that give the correct energy ordering between structures. We also show that quantities that were not fitted, such as elastic constants and the band structure of C60, can be reliably obtained from our scheme.


Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


2019 ◽  
Vol 7 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Tongtong Wang ◽  
Xiaosong Guo ◽  
Jingyan Zhang ◽  
Wen Xiao ◽  
Pinxian Xi ◽  
...  

We give a systematic study of the HER catalytic activity of transition metal doped NiS2 by first principles calculations and experiments.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2339 ◽  
Author(s):  
Xiuwen Zhao ◽  
Bin Qiu ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and spin polarization properties of pentagonal structure PdSe2 doped with transition metal atoms are studied through first- principles calculations. The theoretical investigations show that the band gap of the PdSe2 monolayer decreases after introducing Cr, Mn, Fe and Co dopants. The projected densities of states show that p-d orbital couplings between the transition metal atoms and PdSe2 generate new spin nondegenerate states near the Fermi level which make the system spin polarized. The calculated magnetic moments, spin density distributions and charge transfer of the systems suggest that the spin polarization in Cr-doped PdSe2 will be the biggest. Our work shows that the properties of PdSe2 can be modified by doping transition metal atoms, which provides opportunity for the applications of PdSe2 in electronics and spintronics.


2021 ◽  
Vol 9 (1) ◽  
pp. 281-292
Author(s):  
Baltej Singh ◽  
Ziliang Wang ◽  
Sunkyu Park ◽  
Gopalakrishnan Sai Gautam ◽  
Jean-Noël Chotard ◽  
...  

Using first-principles calculations, we chart the chemical space of 3d transition metal-based NaSICON phosphates with the formula NaxMM′(PO4)3 (with M and M′ = Ti, V, Cr, Mn, Fe, Co and Ni). Novel NaSICON compositions were revealed.


Sign in / Sign up

Export Citation Format

Share Document