electron concentration
Recently Published Documents


TOTAL DOCUMENTS

717
(FIVE YEARS 97)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 120 (2) ◽  
pp. 022102
Author(s):  
Xiao-Li Zhou ◽  
Yang-Yang Lv ◽  
Hang-Fei Zhang ◽  
Yong Zhang ◽  
Jinglei Zhang ◽  
...  

2022 ◽  
Vol 92 (1) ◽  
pp. 52
Author(s):  
А.А. Тренькин ◽  
К.И. Алмазова ◽  
А.Н. Белоногов ◽  
В.В. Боровков ◽  
Е.В. Горелов ◽  
...  

The initial phase of a spark discharge in the gap between the pin (cathode) and a plane 1.5 mm long in atmospheric pressure air under conditions of preliminary photoionization by an auxiliary discharge was investigated by the method of shadow photography. In the absence of preionization, the discharge from the first nanoseconds after breakdown is an aggregate of a large number of micron-diameter channels. It was found that the electron concentration resulting from preionization, estimated at 108  109 cm-3, increases the degree of uniformity of the discharge channel in the near-cathode region; however, in the near-anode region, the channel remains microstructured. Within the framework of the mechanism of microstructure formation due to the instability of the ionization wave front, a criterion for the formation of a uniform discharge is obtained and an explanation of the results obtained is presented.


2022 ◽  
Author(s):  
micka bah ◽  
Taoufik Slimani Tlemcani ◽  
Sarah Boubenia ◽  
Camille Justeau ◽  
Nicolas Vivet ◽  
...  

ZnO nanowires (NWs) are very attractive for a widespread of nanotechnological applications owing to their tunable electron concentration via structural and surface defects engineering. A 2D electrical profiling of these...


Author(s):  
Antonio Cerdeira ◽  
Magali Estrada ◽  
Marcelo Antonio Pavanello

Abstract In this paper, 3D TCAD simulations are used to show that the electron concentration, current density, and electric field distribution from the interface at the lateral channels and from the top channel to the centre of the silicon wire, in Nanowire and Nanosheet structures, are practically same. This characteristic makes possible to consider that the total channel width for these structures is equal to the perimeter of the transistor sheet, allowing to extend the application of the Symmetric Doped Double-Gate Model (SDDGM) model to Nanowires and Nanosheets MOSFETs, with no need to include new parameters. The Model SDDGM is validated for this application using several measured and simulated structures of Nanowires and Nanosheets transistors, with different aspect ratios of fin width and fin height, showing very good agreement between measured or simulated characteristics and modelled. SDDGM is encoded in Verilog-A language and implemented in SmartSPICE circuit simulator.


2021 ◽  
Author(s):  
Yuanchao Huang ◽  
Rong Wang ◽  
Yiqiang Zhang ◽  
Deren Yang ◽  
Xiaodong Pi

Abstract As a common impurity in 4H-silicon carbide (4H-SiC), hydrogen (H) may play a role in the tuning of the electronic properties of 4H-SiC. In this work, we systemically explore the effect of H on the electronic properties of both n-type and p-type 4H-SiC. The passivation of H for intrinsic defects such as carbon vacancies (VC) and silicon vacancies (VSi) in 4H-SiC is also evaluated. We find that interstitial H at the bonding center of the Si-C bond (Hi bc) and interstitial H at the tetrahedral center of Si (Hi Si-te) dominate the defect configurations of H in p-type and n-type 4H-SiC, respectively. For n-type 4H-SiC, the compensation of Hi Si-te is found to pin the Fermi energy and hinder the increase of electron concentration for highly N-doped 4H-SiC. The compensation of Hi bc is negligible compared to that of VC on the p-type doping of Al-doped 4H-SiC. We have further examined whether H can passivate VC and improve carrier lifetime in 4H-SiC. It turns out that nonequilibrium passivation of VC by H is effective to eliminate the defect states of VC, which enhances the carrier lifetime of moderately doped 4H-SiC. Regarding the quantum-qubit applications of 4H-SiC, we find that H can readily passivate VSi during the creation of VSi centers. Thermal annealing is needed to decompose the resulting VSi-nH (n=1~4) complexes and promote the uniformity of the photoluminescence of VSi arrays in 4H-SiC. The current work may inspire the further development of the impurity engineering of H in 4H-SiC.


2021 ◽  
Vol 39 (6) ◽  
pp. 1005-1012
Author(s):  
Igo Paulino ◽  
Ana Roberta Paulino ◽  
Amauri F. Medeiros ◽  
Cristiano M. Wrasse ◽  
Ricardo Arlen Buriti ◽  
...  

Abstract. Using OI6300 airglow images collected over São João do Cariri (7.4∘ S, 36.5∘ W) from 2000 to 2007, the equatorial plasma bubble (EPB) zonal drifts were calculated. A strong day-to-day variability was observed in the EPB zonal drifts, which is directly associated with the very complex dynamics of the nighttime thermosphere–ionosphere system near the Equator. The present work investigated the contribution of the semidiurnal lunar tide M2 for the EPB zonal drifts. The M2 presented an amplitude of 3.1 m s−1 in the EPB zonal drifts, which corresponds to 5.6 % of the average drifts. The results showed that the M2 amplitudes in the EPB zonal drifts were solar cycle and seasonally dependent. The amplitude of the M2 was stronger during the high solar activity, reaching over 10 % of the EPB zonal drift average. Regarding the seasons, during the Southern Hemisphere summer, the M2 amplitude was twice as large (12 %) compared to the equinox ones. The seasonality agrees with other observations of the M2 in the ionospheric parameters such as vertical drifts and electron concentration, for instance. On the other hand, the very large M2 amplitudes found during the high solar activity agree with previous observations of the lunar tide in the ionospheric E region.


2021 ◽  
Vol 56 ◽  
pp. 61-70
Author(s):  
Ya. M. Olikh ◽  

The experimental results of amplitude effects are compared (from an ultrasonic wave deformation amplitude – a tension τUS) for electron concentration and changes of the lattice parameter on the same sample GaN/Al0.2Ga0.8N/GaN/AlN. It has been experimentally established that at ultrasonic loading (frequency 5–10 MHz, amplitude – towards 2·104 W/m2) there is a nonlinear increase in the effective electron concentration and an increase in the lattice parameter; at the same time, the mobility of electrons decreases and μН(τUS) ~ |τUS|. The energy parameters of the acoustic activation charge carriers process are calculated from the approximation of experimental amplitude changes – Еа ≈ 50 meV and γn(300 K) ≈ 2,5·10-27 m3. The amplitude dependences (increase) of the relative lattice parameter change (ΔС/С) from the tension τUS have been investigated experimentally at different frequencies. The energy of DX-center transition UDX ≈ 108 meV and the activation volume of this transition γDX ≈ 6,6·10-27 m3 are calculated from the approximation of the experimental amplitude changes. The revealed correlation of the magnitude of acoustic induced effects in different experiments allows to build a quantitative energy model of the acoustic action process based on the properties of metastable DX centers. It is shown that the acoustic induced process occurs due to the dimensional displacement of the DX-center atom (a background impurity of silicon atoms) from the non-central position to the centrally symmetric one; herewith DX-center is ionized, one goes into the d0-state. It is believed that the changes are most likely to occur near penetrating dislocations in the barrier layer Al0.2Ga0.8N – acoustic modulated oscillations of the distance between the possible positions of the donor atom lead to a decrease in the barrier to the displacement of the defect.


2021 ◽  
Vol 21 (12) ◽  
pp. 6183-6187
Author(s):  
P. K. Das ◽  
J. Pal ◽  
M. Debbarma ◽  
K. P. Ghatak

In this paper we study the Electron Statistics in Heavily Doped N Type-Intrinsic-P Type-Intrinsic structures of non-linear optical, tetragonal and opto-electronic materials in the presence of magnetic quantization. It is found taking such heavily doped structures of Cd3As2, CdGeAs2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y as examples that the Fermi energy (EF) oscillates with inverse quantizing magnetic field (1/B) and increases with increasing electron concentration with different numerical magnitudes which is the signature of respective band structure. The numerical value of the Fermi energy is different in different cases due to the different values of the energy band constants.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pragyey Kumar Kaushik ◽  
Sankalp Kumar Singh ◽  
Ankur Gupta ◽  
Ananjan Basu ◽  
Edward Yi Chang

AbstractThe presence of surface traps is an important phenomenon in AlGaN/GaN HEMT. The electrical and physical properties of these surface traps have been analyzed through the study of 2DEG electron concentration along with the variation of aluminum percentage in the barrier layer of HEMT. This analysis shows that from deep to shallow donors, the percentage change in electron density in 2DEG gets saturated (near 8%) with change in aluminum concentration. The depth of the quantum potential well below the Fermi level is also analyzed and is found to get saturated (near 2%) with aluminum percentage when surface donor states energy changes to deep from shallow. The physics behind this collective effect is also analyzed through band diagram too. The effect of surface donor traps on the surface potential also has been discussed in detail. These surface states are modeled as donor states. Deep donor (EC − ED = 1.4 eV) to shallow donor (EC − ED = 0.2 eV) surface traps are thoroughly studied for the donor concentration of 1011 to 1016 cm−2. This study involves an aluminum concentration variation from 5 to 50%. This paper for the first time presents the comprehensive TCAD study of surface donor and analysis of electron concentration in the channel and 2DEG formation at AlGaN–GaN interface.


Sign in / Sign up

Export Citation Format

Share Document