A protective roasting strategy for preparation of stable mesoporous hollow CeO2 microspheres with enhanced catalytic activity for one-pot synthesis of imines from benzyl alcohols and anilines

2019 ◽  
Vol 6 (3) ◽  
pp. 829-836 ◽  
Author(s):  
Yu Long ◽  
Hongbo Zhang ◽  
Zekun Gao ◽  
Jiaheng Qin ◽  
Yiting Pan ◽  
...  

A protective roasting strategy can be applied to prepare stable mh-CeO2 microspheres with enhanced catalytic activity and reusability for one-pot synthesis of imines.

2020 ◽  
Author(s):  
Lucien Caspers ◽  
Julian Spils ◽  
Mattis Damrath ◽  
Enno Lork ◽  
Boris Nachtsheim

In this article we describe an efficient approach for the synthesis of cyclic diaryliodonium salts. The method is based on benzyl alcohols as starting materials and consists of an Friedel-Crafts-arylation/oxidation sequence. Besides a deep optimization, particluar focusing on the choice and ratios of the utilized Bronsted-acids and oxidants, we explore the substrate scope of this transformation. We also discuss an interesting isomerism of cyclic iodonium salts substituted with aliphatic substituents at the bridge head carbon. <br>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zahra Alirezvani ◽  
Mohammad G. Dekamin ◽  
Ehsan Valiey

AbstractThe uniform decoration of Cu(II) species and magnetic nanoparticles on the melamine-functionalized chitosan afforded a new supramolecular biopolymeric nanocomposite (Cs-Pr-Me-Cu(II)-Fe3O4). The morphology, structure, and catalytic activity of the Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite have been systematically investigated. It was found that Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite can smoothly promote environmentally benign oxidation of different benzyl alcohol derivatives by tert-butyl hydroperoxide (TBHP) to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile, as a multifunctional catalyst. Interestingly, Fe3O4 nanoparticles enhance the catalytic activity of Cu(II) species. The corresponding benzylidenemalononitriles were formed in high to excellent yields at ambient pressure and temperature. The heterogeneous Cs-Pr-Me-Cu(II)-Fe3O4 catalyst was also very stable with almost no leaching of the Cu(II) species into the reaction medium and could be easily recovered by an external magnet. The recycled Cs-Pr-Me-Cu(II)-Fe3O4 was reused at least four times with slight loss of its activity. This is a successful example of the combination of chemo- and bio-drived materials catalysis for mimicing biocatalysis as well as sustainable and one pot multistep synthesis.


2020 ◽  
Vol 44 (9-10) ◽  
pp. 557-565
Author(s):  
Zhenzhen Geng ◽  
Hong-yu Zhang ◽  
Guohui Yin ◽  
Yuecheng Zhang ◽  
Jiquan Zhao

The ionic liquid 1-methyl-3-(3-sulfopropyl)imidazolium chloride ([MIMPs]+Cl-) in combination with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sodium nitrite (NaNO2) as a catalytic system demonstrates high efficiency in the one-pot two-step aerobic oxidative condensation of benzyl alcohols with 1,2-phenylenediamines to give benzimidazoles. Various benzimidazoles are obtained in good to excellent yields by this strategy.


Nano Research ◽  
2013 ◽  
Vol 6 (12) ◽  
pp. 871-879 ◽  
Author(s):  
Junchen Chen ◽  
Renyuan Zhang ◽  
Lu Han ◽  
Bo Tu ◽  
Dongyuan Zhao

2018 ◽  
Vol 14 ◽  
pp. 2308-2312 ◽  
Author(s):  
Edwin Alfonzo ◽  
Jesse W L Mendoza ◽  
Aaron B Beeler

A one-pot synthesis of epoxides from commercially available benzyl alcohols and aldehydes is described. The reaction proceeds through in situ generation of sulfonium salts from benzyl alcohols and their subsequent deprotonation for use in Corey–Chaykovsky epoxidation of aldehydes. The generality of the method is exemplified by the synthesis of 34 epoxides that were made from an array of electronically and sterically varied alcohols and aldehydes.


Nanoscale ◽  
2017 ◽  
Vol 9 (29) ◽  
pp. 10233-10239 ◽  
Author(s):  
Yanli Niu ◽  
Xiaoqin Huang ◽  
Xiaoshuai Wu ◽  
Lei Zhao ◽  
Weihua Hu ◽  
...  

Exploration of sustainable electrocatalysts toward oxygen reduction reaction (ORR) with high catalytic activity remains a key challenge in the development of metal–air batteries and fuel cells.


Sign in / Sign up

Export Citation Format

Share Document