scholarly journals Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries

RSC Advances ◽  
2019 ◽  
Vol 9 (23) ◽  
pp. 13077-13081 ◽  
Author(s):  
Pooja Kumari ◽  
Khushbu Sharma ◽  
Pratibha Pal ◽  
Manoj Kumar ◽  
Takayuki Ichikawa ◽  
...  

All solid-state Li-ion batteries using commercial Bi and Sb as negative electrodes with a high coulombic efficiency (90–99%) and high capacity retention of 82 and 95%, respectively.

2021 ◽  
pp. 2100836
Author(s):  
Shumin Zhang ◽  
Feipeng Zhao ◽  
Shuo Wang ◽  
Jianwen Liang ◽  
Jian Wang ◽  
...  

MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3513-3518 ◽  
Author(s):  
Taner Zerrin ◽  
Mihri Ozkan ◽  
Cengiz S. Ozkan

ABSTRACTIncreasing the operation voltage of LiCoO2 (LCO) is a direct way to enhance the energy density of the Li-ion batteries. However, at high voltages, the cycling stability degrades very fast due to the irreversible changes in the electrode structure, and formation of an unstable solid electrolyte interface layer. In this work, Ag thin film was prepared on commercial LCO cathode by using magnetron sputtering technique. Ag coated electrode enabled an improved electrochemical performance with a better cycling capability. After 100 cycles, Ag coated LCO delivers a discharge capacity of 106.3 mAh g-1 within 3 - 4.5 V at C/5, which is increased by 45 % compared to that of the uncoated LCO. Coating the electrode surface with Ag thin film also delivered an improved Coulombic efficiency, which is believed to be an indication of suppressed parasitic reactions at the electrode interface. This work may lead to new methods on surface modifications of LCO and other cathode materials to achieve high-capacity Li-ion batteries for high-voltage operations.


2020 ◽  
Vol 8 (35) ◽  
pp. 18132-18142 ◽  
Author(s):  
Tahar Azib ◽  
Nicolas Bibent ◽  
Michel Latroche ◽  
Florent Fischer ◽  
Jean-Claude Jumas ◽  
...  

High-capacity Si-based anodes with good coulombic efficiency and long-cycle life are achieved by embedding silicon nanoparticles in dual Ni3Sn4/Ni3Sn2 active/inactive intermetallic matrix.


2018 ◽  
Vol 165 (5) ◽  
pp. A957-A962 ◽  
Author(s):  
Seon-Joo Choi ◽  
Sang-Hun Lee ◽  
Yoon-Cheol Ha ◽  
Ji-Hyun Yu ◽  
Chil-Hoon Doh ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75145-75148 ◽  
Author(s):  
Qianqian Jiang ◽  
Lei Xu ◽  
Jia Huo ◽  
Han Zhang ◽  
Shuangyin Wang

We, for the first time, prepared layered Li(Ni1/3Co1/3Mn1/3)O2 by a novel oxygen plasma-assisted solid-state approach, which almost shows the best performance among ternary cathode materials for Li-ion batteries.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 408
Author(s):  
Katja Waetzig ◽  
Christian Heubner ◽  
Mihails Kusnezoff

All-solid-state batteries (ASSB) are considered promising candidates for future energy storage and advanced electric mobility. When compared to conventional Li-ion batteries, the substitution of Li-ion conductive, flammable liquids by a solid electrolyte and the application of Li-metal anodes substantially increase safety and energy density. The solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) provides high Li-ion conductivity of about 10−3 S/cm and is considered a highly promising candidate for both the solid electrolyte-separator and the ionically conductive part of the all-solid state composite cathode, consisting of the cathode material, the solid electrolyte, and an electron conductor. Co-sintering of the composite cathode is a sophisticated challenge, because temperatures above 1000 °C are typically required to achieve the maximum ionic conductivity of LATP but provoke reactions with the cathode material, inhibiting proper electrochemical functioning in the ASSB. In the present study, the application of sintering aids with different melting points and their impact on the sinterability and the conductivity of LATP were investigated by means of optical dilatometry and impedance spectroscopy. The microstructure of the samples was analyzed by SEM. The results indicate that the sintering temperature can be reduced below 800 °C while maintaining high ionic conductivity of up to 3.6 × 10−4 S/cm. These insights can be considered a crucial step forward towards enable LATP-based composite cathodes for future ASSB.


2016 ◽  
Vol 4 (9) ◽  
pp. 3253-3266 ◽  
Author(s):  
Yizhou Zhu ◽  
Xingfeng He ◽  
Yifei Mo

This study provides the understanding and design strategy of solid electrolyte–electrode interfaces to improve electrochemical performance of all-solid-state Li-ion batteries.


2020 ◽  
Vol 13 (9) ◽  
pp. 2924-2937 ◽  
Author(s):  
Dongjiang Chen ◽  
Chao Feng ◽  
Yupei Han ◽  
Bo Yu ◽  
Wei Chen ◽  
...  

Both organic and inorganic ingredients in SEI undergo reversible conversions and contribute capacity enhancement with the catalysis of Fe3C.


2016 ◽  
Vol 4 (43) ◽  
pp. 17025-17032 ◽  
Author(s):  
Hyun Woo Kim ◽  
Palanisamy Manikandan ◽  
Young Jun Lim ◽  
Jin Hong Kim ◽  
Sang-cheol Nam ◽  
...  

Concerning the safety aspects of high-voltage Li-ion batteries, a pelletized hybrid solid electrolyte (HSE) was prepared by blending Li7La3Zr2O12 (LLZO) ceramic particles and an ionic liquid electrolyte (ILE) for use in pseudo-solid-state Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document