scholarly journals Mechanistic study on substitution reaction of a citrato(p-cymene)Ru(ii) complex with sulfur-containing amino acids

RSC Advances ◽  
2019 ◽  
Vol 9 (43) ◽  
pp. 25177-25183
Author(s):  
Sen-ichi Aizawa ◽  
Kohei Takizawa ◽  
Momoko Aitani

Thorough kinetic study revealed characteristics of the reaction mechanism for arene ruthenium(ii) complexes with bio-related ligands.

2015 ◽  
Vol 2 (6) ◽  
pp. 713-720 ◽  
Author(s):  
Akio Kamimura ◽  
Tatsuro Yoshinaga ◽  
Fumiaki Noguchi ◽  
Koichiro Miyazaki ◽  
Hidemitsu Uno

A kinetic study on the intramolecular direct radical substitution reaction on tin atoms was undertaken.


Biochemistry ◽  
1965 ◽  
Vol 4 (4) ◽  
pp. 619-625 ◽  
Author(s):  
R. A. Libby ◽  
D. W. Margerum

Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


1987 ◽  
Vol 52 (10) ◽  
pp. 2457-2459
Author(s):  
František Jursík

Optical activity of the achiral cation [Co(NH3)6]3+ is induced both by (S)-AsnONa and (S)-GlnONa, as shown by a negative Cotton effect in the 1A1g → 1T1g transition region. An outer-sphere interaction by three-point attachment of the amides can explain the fact that substitution reaction of [Co(NH3)6]3+ with the mentioned amides in an alkaline medium is unusually slow as compared with other amino acids.


1992 ◽  
Vol 282 (3) ◽  
pp. 891-897 ◽  
Author(s):  
O K Tollersrud ◽  
N N Aronson

Structural and physical properties of glycosylasparaginase (EC 3.5.1.26) from the livers of human, pig, cow, rat, mouse and chicken were compared. The enzyme in all species had a common basic structure of two N-glycosylated subunits of about 24 (alpha) and 20 (beta) kDa joined by non-covalent forces. Subunit-specific antisera against the rat glycosylasparaginase bound specifically and sensitively to the corresponding subunits from all species. Identity of 80% of the amino acids was found between the N-terminal sequences of corresponding pig and rat glycosylasparaginase alpha- and beta-subunits and the deduced sequence from a human glycosylasparaginase cDNA [Fisher, Tollersrud & Aronson (1990) FEBS Lett. 269, 440-444]. The beta-subunit from all three species has an N-terminal threonine reported to be involved in the reaction mechanism for the human enzyme [Kaartinen, Williams, Tomich, Yates, Hood & Mononen (1991) J. Biol. Chem. 266, 5860-5869]. The native enzyme appeared as a heterodimer among the mammals, whereas the chicken enzyme had a greater molecular mass and is probably either a tetramer or a heterodimer bound to an unrelated peptide(s). All glycosylasparaginases were thermostable, requiring temperatures between 65 degrees C and 80 degrees C to be irreversibly inactivated. In addition, they were unusually stable at high pH and remained active in the presence of SDS except at low pH. The pH maximum was between 5.5 and 6 except for the rat and mouse enzymes which had a broad maximum between pH 7 and 8. A number of other properties were observed which also distinguish the enzyme from individual and closely related species.


Sign in / Sign up

Export Citation Format

Share Document