Elucidating the role of solvents in acid catalyzed dehydration of biorenewable hydroxy-lactones

2020 ◽  
Vol 5 (4) ◽  
pp. 651-662 ◽  
Author(s):  
Gourav Shrivastav ◽  
Tuhin S. Khan ◽  
Manish Agarwal ◽  
M. Ali Haider

Utilizing the differential stabilization of reactant and transition state in the polar and apolar solvents to lower the activation free energy barrier for acid-catalyzed dehydration of hydroxy lactones.

Author(s):  
Simon Black

The activation free energy for nucleation of crystals from melts and solutions is described and simulated in a different way from traditional nucleation theory. For molecules at the surface of a nucleus, the unfavourable entropy of fusion outweighs the favourable enthalpy change. The free energy barrier to nucleation in pure melts is simulated from the entropy and enthalpy of fusion. By incorporating the unfavourable entropy of unmixing, nucleation from impure melts and solutions is also simulated. The nature of the metastable zone alters and its size is estimated.


2019 ◽  
Author(s):  
Mariana Levi ◽  
Paul C. Whitford

AbstractThe accurate expression of proteins requires the ribosome to efficiently undergo elaborate conformational rearrangements. The most dramatic of these motions is subunit rotation, which is necessary for tRNA molecules to transition between ribosomal binding sites. While rigid-body descriptions provide a qualitative picture of the process, obtaining quantitative mechanistic insights requires one to account for the relationship between molecular flexibility and collective dynamics. Using simulated rotation events, we assess the quality of experimentally-accessible measures for describing the collective displacement of the ~ 4000-residue small subunit. For this, we ask whether each coordinate is able to identify the underlying free-energy barrier and transition state ensemble (TSE). We find that intuitive structurally-motivated coordinates (e.g. rotation angle, inter-protein distances) can distinguish between the endpoints, though they are poor indicators of barrier-crossing events, and they underestimate the free-energy barrier. In contrast, coordinates based on inter-subunit bridges can identify the TSE. We additionally verify that the committor probability for the putative TSE configurations is 0.5, a hallmark feature of any transition state. In terms of structural properties, these calculations implicate a transition state in which flexibility allows for asynchronous rearrangements of the bridges as the ribosome adopts a partially-rotated orientation. These calculations provide a theoretical foundation, upon which experimental techniques may precisely quantify the energy landscape of the ribosome.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2013 ◽  
Vol 12 (08) ◽  
pp. 1341004
Author(s):  
XUE WU ◽  
TING FU ◽  
ZHI-LONG XIU ◽  
LIU YIN ◽  
JIN-GUANG WANG ◽  
...  

Prions are associated with neurodegenerative diseases induced by transmissible spongiform encephalopathies. The infectious scrapie form is referred to as PrP Sc , which has conformational change from normal prion with predominant α-helical conformation to the abnormal PrP Sc that is rich in β-sheet content. Neurodegenerative diseases have been found from both human and bovine sources, but there are no reports about infected by transmissible spongiform encephalopathies from rabbit, canine and horse sources. Here we used coarse-grained Gō model to compare the difference among human, bovine, rabbit, canine, and horse normal (cellular) prion proteins. The denatured state of normal prion has relation with the conversion from normal to abnormal prion protein, so we used all-atom Gō model to investigate the folding pathway and energy landscape for human prion protein. Through using coarse-grained Gō model, the cooperativity of the five prion proteins was characterized in terms of calorimetric criterion, sigmoidal transition, and free-energy profile. The rabbit and horse prion proteins have higher folding free-energy barrier and cooperativity, and canine prion protein has slightly higher folding free-energy barrier comparing with human and bovine prion proteins. The results from all-atom Gō model confirmed the validity of C α-Gō model. The correlations of our results with previous experimental and theoretical researches were discussed.


2010 ◽  
Vol 184 ◽  
pp. 400-414 ◽  
Author(s):  
Andreas Nußbaumer ◽  
Elmar Bittner ◽  
Wolfhard Janke

2020 ◽  
Vol 11 (43) ◽  
pp. 11902-11914 ◽  
Author(s):  
José D. Camino ◽  
Pablo Gracia ◽  
Serene W. Chen ◽  
Jesús Sot ◽  
Igor de la Arada ◽  
...  

The extent of protein hydration modulates the free energy barrier of both heterogeneous and homogeneous α-synuclein nucleation, leading to the formation of distinct amyloid polymorphs depending on the water activity of the protein microenvironment.


Sign in / Sign up

Export Citation Format

Share Document