activation free energy
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 1)

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1356
Author(s):  
Tian Liu ◽  
Zhangyong Liu ◽  
Lipeng Tang ◽  
Jun Li ◽  
Zhuhong Yang

In this work, we study the trans influence of boryl ligands and other commonly used non-boryl ligands in order to search for a more active catalyst than the ruthenium dihydride complex Ru(PNP)(CO)H2 for the hydrogenation of CO2. The theoretical calculation results show that only the B ligands exhibit a stronger trans influence than the hydride ligand and are along increasing order of trans influence as follows: –H < –BBr2 < –BCl2 ≈ –B(OCH)2 < –Bcat < –B(OCH2)2 ≈ –B(OH)2 < –Bpin < –B(NHCH2)2 < –B(OCH3)2 < –B(CH3)2 < –BH2. The computed activation free energy for the direct hydride addition to CO2 and the NBO analysis of the property of the Ru–H bond indicate that the activity of the hydride can be enhanced by the strong trans influence of the B ligands through the change in the Ru–H bond property. The function of the strong trans influence of B ligands is to decrease the d orbital component of Ru in the Ru–H bond. The design of a more active catalyst than the Ru(PNP)(CO)H2 complex is possible.


2021 ◽  
Author(s):  
Alejandro Valiente ◽  
Cheuk-Wai Tai ◽  
Mårten Ahlquist ◽  
Belén Martín-Matute

The composition and structure of catalytic intermediates in the context of the Suzuki–Miyaura cross-coupling reaction cata-lyzed by Pd@MIL-101-NH2(Cr) has been investigated. Trimeric and tetrameric palladium species with formula [Br-Pd-Ar]nBr- (n = 3–4) have been identified by electrospray ionization mass spectrometry (ESI-MS) and density-functional theory (DFT) calculations, and their role in the transmetalation step has been studied. The weak nature of the bonds between Pd and the bridging halides in these species enables a very easy transmetalation step, with an estimated activation free energy of only 10 kcal/mol. Further experimental support for Pd speciation was obtained using scanning transmission electron micros-copy (STEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and fluorine-19 nuclear magnetic reso-nance spectroscopy (19F NMR).


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2944
Author(s):  
Ernesto Villar-Cociña ◽  
Moisés Frías ◽  
Holmer Savastano ◽  
Loic Rodier ◽  
María Isabel Sánchez de Rojas ◽  
...  

In this research work, the quantitative characterization of a binary blend comprised of two pozzolans (sugar cane straw (SCSA)–sugar cane bagasse ashes (SCBA), bamboo leaf ash (BLAsh)–SCBA and paper sludge (PS)–fly ash (FA)) taking into account the calculated values of the kinetic parameters of the reaction in the pozzolan/calcium hydroxide system is shown. The paper shows the most significant and important results obtained by the authors in the quantitative assessment (calculation of kinetic parameters) of the pozzolanic reaction of different mixtures of pozzolanic materials that are residues from agriculture or industrial processes. This allows a direct and rigorous comparison of the pozzolanic activity of the binary combinations of materials. The values of the kinetic parameters (reaction rate constant or activation free energy) constitute a very precise quantitative index of the pozzolanic activity of the binary combinations of materials, which is very useful for its employment in the elaboration of ternary cements. This paper shows that the binary blends 1SCBA60Blash40, 1SCBA50Blash50, 1SCBA70Blash30 have a very high pozzolanic reactivity followed by PSLSFA, 2SCBA50SCSA50, PSISFA and SCWI.


2021 ◽  
Author(s):  
Yamei Zhao ◽  
MengDan Huo ◽  
HongJi Zhou

Abstract The DFT calculation of the B3LYP level was carried out to explore the reaction mechanism of the synthesis of spirocyclo[4, 5]decane skeleton by gold-catalyzed allenyl compounds. The more accurate energy under the CH3CN solvent in the experiment is calculated by the single point energy of the SMD model. Computational studies have shown that the reaction consists of three main steps: intramolecular cycloaddition of the end group carbon atoms of allenyl and vinyl groups, the semipinacol rearrangement process in which the four-membered ring is reconstructed into the five-membered ring, the elimination reaction releases the catalyst and obtains the product. The calculation results show that Zheng et al. reported that the gold-catalyzed synthesis reaction can easily occur under the experimental conditions due to its low activation free energy (12.42–16.79 kcal/mol). Furthermore, it was found that the MOMO(CH2)2 substituent has higher reactivity than the corresponding reactant of the phenyl substituent.


2021 ◽  
Author(s):  
Julia R. Rogers ◽  
Gustavo Espinoza Garcia ◽  
Phillip L. Geissler

ABSTRACTThe collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport, lipid desorption, which is rate-limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.SIGNIFICANCECell homeostasis requires spatiotemporal regulation of heterogeneous membrane compositions, in part, through non-vesicular transport of individual lipids between membranes. By systematically investigating how the chemical diversity present in glycerophospholipidomes and variations in membrane order influence the free energy barriers for passive lipid transport, we discover a correlation between the activation free energy and membrane hydrophobicity. By demonstrating how membrane hydrophobicity is modulated by local changes in membrane composition and order, we solidify the link between membrane physicochemical properties and lipid transport rates. Our results suggest that variations in cell membrane hydrophobicity may be exploited to direct non-vesicular lipid traffic.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marco Fioroni ◽  
Nathan J. DeYonker

Heterogeneous phase astrochemistry plays an important role in the synthesis of complex organic matter (COM) as found on comets and rocky body surfaces like asteroids, planetoids, moons and planets. The proposed catalytic model is based on two assumptions: (a) siliceous rocks in both crystalline or amorphous states show surface-exposed defective centers such as siloxyl (Si-O•) radicals; (b) the second phase is represented by gas phase CO molecules, an abundant C1 building block found in space. By means of quantum chemistry; (DFT, PW6B95/def2-TZVPP); the surface of a siliceous rock in presence of CO is modeled by a simple POSS (polyhedral silsesquioxane) where a siloxyl (Si-O•) radical is present. Four CO molecules have been consecutively added to the Si-O• radical and to the nascent polymeric CO (pCO) chain. The first CO insertion shows no activation free energy with ΔG200K = −21.7 kcal/mol forming the SiO-CO• radical. The second and third CO insertions show ΔG200K‡ ≤ 10.5 kcal/mol. Ring closure of the SiO-CO-CO• (oxalic anhydride) moiety as well as of the SiO-CO-CO-CO• system (di-cheto form of oxetane) are thermodynamically disfavored. The last CO insertion shows no free energy of activation resulting in the stable five member pCO ring, precursor to 1,4-epoxy-1,2,3-butanone. Hydrogenation reactions of the pCO have been considered on the SiO oxygen or on the carbons and oxygens of the pCO chains. The formation of the reactive aldehyde SiO-CHO on the siliceous surface is possible. In principle, the complete hydrogenation of the (CO)1−4 series results in the formation of methanol and polyols. Furthermore, all the SiO-pCO intermediates and the lactone 1,4-epoxy-1,2,3-butanone product in its radical form can be important building blocks in further polymerization reactions and/or open ring reactions with H (aldehydes, polyols) or CN (chetonitriles), resulting in highly reactive multi-functional compounds contributing to COM synthesis.


2020 ◽  
Author(s):  
Veejendra Yadav

The <i>endo</i> and <i>exo</i> stereoselectivities of the Diels-Alder (DA) cycloaddition reactions of 3,3-disubstituted cyclopropenes with butadiene and cyclopentadiene, the latter for the first time, were investigated by means of density functional and quantum chemical calculations for a comparison. To establish distinction between the selectivites, activation free energies were systematically estimated in the gas phase and also in solvents. The differential activation free energies clearly predict exclusive <i>endo</i> configuration of the products formed from the reaction of the unsubstituted cyclopropene with butadiene and cyclopentadiene. However, the results were found to be markedly different for the substituted cyclopropenes from available experimental selectivities. It was also discovered that butadiene and cyclopentadiene are markedly different in their respective stereospecific product yields, nevertheless the difference between the two was only a methylene group. The failure of the differential activation free energy approach to predict the experimental stereoselectivities of the DA reactions of several perhalocyclopropenes with cyclopentadiene is probably due to yet insufficient development of the various theoretical models dealing with the <i>endo</i> and <i>exo</i> DA preferences.


Sign in / Sign up

Export Citation Format

Share Document