scholarly journals Incorporation of short, charged peptide tags affects the temperature responsiveness of positively-charged elastin-like polypeptides

2019 ◽  
Vol 7 (34) ◽  
pp. 5245-5256 ◽  
Author(s):  
Charng-Yu Lin ◽  
Julie C. Liu

Electrostatic and hydrophobic interactions between elastin-like polypeptides (ELPs) and non-ELP sequences affect the temperature responsiveness of ELP-based proteins.

2021 ◽  
Author(s):  
Felix Nicolaus ◽  
Fatima Ibrahimi ◽  
Anne den Besten ◽  
Gunnar von Heijne

During SecYEG-mediated cotranslational insertion of membrane proteins, transmembrane helices (TMHs) first make contact with the membrane when their N-terminal end is ~45 residues away from the peptidyl transferase center. However, we recently uncovered instances where the first contact is delayed by up to ~10 residues. Here, we recapitulate these effects using a model TMH fused to two short segments from the BtuC protein: a positively charged loop and a re-entrant loop. We show that the critical residues are two Arg residues in the positively charged loop and four hydrophobic residues in the re-entrant loop. Thus, both electrostatic and hydrophobic interactions involving sequence elements that are not part of a TMH can impact the way the latter behaves during membrane insertion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Misbah Iram ◽  
Hamadia Sultana ◽  
Muhammad Usman ◽  
Bazgha Ahmad ◽  
Nadia Akram ◽  
...  

Abstract Interaction of sulphone based reactive dyes, designated as dye-1 and dye-2, with cationic micellar system of cetyltrimethylammonium bromide (CTAB), has been investigated by spectroscopic and conductometeric measurements. Efficiency of the selected micellar systems is assessed by the values of binding constant (K b ), partition coefficient (K x ) and respective Gibbs energies. Critical micelle concentration (CMC) of surfactant, electrostatic and hydrophobic interactions as well as polarity of the medium plays significant role in this phenomenon. The negative values of Gibbs energies of binding (∆G b ) and partition (∆G p ) predicts the feasibility and spontaneity of respective processes. Similarly negative values of ∆G m and ∆H m and positive values of ∆S m , calculated from conductometeric data, further, revealed the exothermicity, spontaneity and, thus, stability of system. The results, herein, have disclosed the strong interaction between dye and surfactant molecules. The dye-2 has been observed to be solubilized to greater extent, as compared to dye 1, due to strong interaction ith hydrophiles of CTAB and accommodation of its molecules in palisade layer of micelle closer to the micelle/water interface.


2021 ◽  
Author(s):  
Simon Sprenger ◽  
Simona M. Migliano ◽  
Florian Oleschko ◽  
Marvin Kobald ◽  
Michael Hess ◽  
...  

ABSTRACTThe endosomal sorting complexes required for transport (ESCRT) mediate various membrane remodeling processes in cells by mechanism that are incompletely understood. Here we combined genetic experiments in budding yeast with site-specific cross-linking to identify rules that govern the self-assembly of individual ESCRT-III proteins into functional ESCRT-III complexes on endosomes. Together with current structural models of ESCRT-III, our findings suggest that, once nucleated, the growing Snf7 protofilament seeds the lateral co-assembly of a Vps24 - Vps2 heterofilament. Both Vps24 and Vps2 use positively charged amino acid residues in their helices α1 to interact with negatively charged amino acids in helix α4 of Snf7 subunits of the protofilament. In the Vps24 - Vps2 heterofilament, the two subunits alternate and interact with each other using hydrophobic interactions between helices α2/α3. The co-assembly of the Vps24 - Vps2 heterofilament restricts the lateral expansion of Snf7 protofilaments and leads the immediate recruitment of the AAA-ATPase Vps4. This self-assembly process of three ESCRT-III subunits results in the formation of a Snf7 protofilament and the co-assembly of a Vps24 - Vps2 heterofilament. This sets the stage for Vps4 recruitment and the subsequent ATP-driven dynamic self-organization of ESCRT-III / Vps4 assemblies and the ensuing membrane budding and scission events.


1993 ◽  
Vol 291 (2) ◽  
pp. 403-408 ◽  
Author(s):  
E A Czuryło ◽  
J Zborowski ◽  
R Dabrowska

The interaction of caldesmon with liposomes composed of various phospholipids has been examined by tryptophan fluorescence spectroscopy. The results indicate that caldesmon makes its strongest complex with phosphatidylserine (PS) vesicles (Kass. = 1.45 x 10(5) M-1). Both electrostatic and hydrophobic interactions contribute to the stability of this complex. The site for strong binding of PS seems to be located in the N-terminal part of the 34 kDa C-terminal fragment of caldesmon. Binding of PS at this site results in displacement of calmodulin from its complex with caldesmon.


Vaccine ◽  
1995 ◽  
Vol 13 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Ragheb H. Al-Shakhshir ◽  
Fred E. Regnier ◽  
Joe L. White ◽  
Stanley L. Hem

2012 ◽  
Vol 550-553 ◽  
pp. 1120-1123
Author(s):  
Rong Li ◽  
Dong Jie Yang ◽  
Wen Yuan Guo ◽  
Xue Qing Qiu

The adsorption properties of sodium lignosulfonate (SL) on Al2O3 particles under different pH values have been investigated. Results show that at low pHs, SL adsorbs on the Al2O3 particles in the form of aggregate as dosage of SL increases; at high pHs, the adsorption is approximately monolayer coverage. With pH values ranging from 3 to 11, the adsorption results are found to be not significantly affected by the addition of urea, ruling out the hydrogen bond as the controlling factor. The paper demonstrates that the main driving force of adsorption is considered as the synergistic effect of electrostatic and hydrophobic interactions when pH pHIEP with additives of Na2SO4 and NaCl.


Sign in / Sign up

Export Citation Format

Share Document