lateral expansion
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 27)

H-INDEX

25
(FIVE YEARS 3)

Ecosystems ◽  
2021 ◽  
Author(s):  
Lars Granlund ◽  
Ville Vesakoski ◽  
Antti Sallinen ◽  
Tiina H. M. Kolari ◽  
Franziska Wolff ◽  
...  

AbstractWe investigated recent changes in spatial patterning of fen and bog zones in five boreal aapa mire complexes (mixed peatlands with patterned fen and bog parts) in a multiproxy study. Comparison of old (1940–1970s) and new aerial images revealed decrease of flarks (wet hollows) in patterned fens by 33–63% in middle boreal and 16–42% in northern boreal sites, as lawns of bog Sphagnum mosses expanded over fens. Peat core transects across transformed areas were used to verify the remote sensing inference with stratigraphic analyses of macrofossils, hyperspectral imaging, and age-depth profiles derived from 14C AMS dating and pine pollen density. The transect data revealed that the changes observed by remote sensing during past decades originated already from the end of the Little Ice Age (LIA) between 1700–1850 CE in bog zones and later in the flarks of fen zones. The average lateral expansion rate of bogs over fen zones was 0.77 m y−1 (range 0.19–1.66) as estimated by remote sensing, and 0.71 m y−1 (range 0.13–1.76) based on peat transects. The contemporary plant communities conformed to the macrofossil communities, and distinct vegetation zones were recognized as representing recently changed areas. The fen-bog transition increased the apparent carbon accumulation, but it can potentially threaten fen species and habitats. These observations indicate that rapid lateral bog expansion over aapa mires may be in progress, but more research is needed to reveal if ongoing fen-bog transitions are a commonplace phenomenon in northern mires.


2021 ◽  
pp. 104494
Author(s):  
Leicheng Guo ◽  
Fan Xu ◽  
Mick van der Wegen ◽  
Ian Townend ◽  
Zheng Bing Wang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 37-49
Author(s):  
Takenobu Ishii ◽  
Kenji Sueishi ◽  
Yasushi Nishii

2021 ◽  
Author(s):  
Fraser B. Jones ◽  
Dale W. Fox ◽  
Todd Oliver ◽  
David G. Bogard

Abstract In this study, a combination of computational simulation and experimental testing was used to evaluate a broad range of forward and lateral expansion angles for a turbine film cooling shaped holes. The study demonstrates the utilizing of RANS based CFD to quickly screen potential optimized geometries, followed by experimental determination of true performance characteristics. As a baseline, the performance of all film cooling holes was evaluated using an internal coolant channel cross-flow. Also, all hole geometries incorporated a filleted inlet-plenum interface, which presumes use of additive manufacturing to construct the turbine components. Experimental validation confirmed that the computational simulations predicted the correct relative performance of various hole geometries, even though actual performance levels were not predicted well. This investigation showed that the performance of laidback, fan shaped holes was much more sensitive to the lateral expansion angle than the forward expansion angle. The optimum shaped hole configuration was found to be a hole with a 15° lateral expansion angle and a 1° forward expansion angle (15-15-1 configuration), which had a maximum average adiabatic effectiveness 40% greater than the baseline 7-7-7 open literature hole. This study also showed that the shaped hole diffuser performance is primarily a function only three parameters: the coolant jet velocity ratio, VR, the shaped hole area ratio, AR, and the hole exit width relative to the pitch between holes, t/P.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 477
Author(s):  
Bramantyo Wikantyoso ◽  
Shu-Ping Tseng ◽  
Setiawan Khoirul Himmi ◽  
Sulaeman Yusuf ◽  
Tsuyoshi Yoshimura

Linear and geometric morphometrics approaches were conducted to analyze the head capsule (HC) shape of collected soldier caste specimens of Coptotermes from various locations in Indonesia. The soldiers’ morphology was observed and measured. The results of the principal component analysis of the group of all species showed two important groups of variables, i.e., the body size and setae characteristics of the pronotum and head. The multicollinearity of the morphometric variables showed the importance of body measurements as well as important alternative characteristics such as the pronotum setae (PrS) and HC setae. Four trends of HC shape were observed across the species. Interestingly, three extreme shapes were depicted by geometric morphometrics of the C. gestroi HC. The phylogenetic tree inferred from 12S and 16S mitochondrial gene fragments showed high confidence for C. gestroi populations. The lateral expansion of the posterior part of the HC across the species was in accordance with the increasing of the number of hairlike setae on the pronotum and HC. These differences among species might be associated with mandible-force-related defensive labor and sensitivity to environmental stressors.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haifeng Ma ◽  
Lingjie Wang ◽  
Xin'gang Niu ◽  
Fanfan Yao ◽  
Kexue Zhang ◽  
...  

In order to reduce the risk of coal and rock dynamic disasters in the coal mine production process, the coupling mechanics characteristics of coal and rock produced in the process of coal mining in the Dingji Coal Mine are taken as the research object, and the experimental study on the deformation characteristics and the variation rule of mechanical parameters of raw coal under multifield coupling (temperature, gas, and stress coupling) was carried out. The results show that the elastic modulus, peak strain, and peak stress of raw coal samples under the thermal-hydraulic-mechanical coupling have the same change law in the test temperature range and all of them show a linear decreasing law as the temperature increases. Under the same temperature gradient increasing condition, the elastic modulus, peak strain, and peak stress show a nongradient decreasing trend as the temperature increases. Both the deformation modulus and the lateral expansion coefficient show a linear increase as the temperature increases, while the deformation modulus and the lateral expansion coefficient show a nongradient increase trend as the temperature increases under the same temperature gradient increasing condition. Under the action of the thermal-hydraulic-mechanical coupling, unloading confining pressure obviously accelerated the yield process of the coal sample, and the confining capacity of confining pressure on transverse strain of the coal sample decreased. To prevent the occurrence of coal and gas outburst, it is necessary to take specific prevention measures according to the change law of triaxial compression mechanics of a raw coal specimen under the action of the thermal-hydraulic-mechanical coupling.


2021 ◽  
Author(s):  
Alexandros Adamis ◽  
Astrid Veronig ◽  
Tatiana Podladchikova ◽  
Karin Dissauer ◽  
Rositsa Miteva ◽  
...  

<p><strong>We present a statistical study on the early evolution of coronal mass ejections (CMEs), to better understand the effect of CME (over)- expansion and how it relates to the production of Solar Energetic Particle (SEP) events. We study the kinematic CME characteristics in terms of their radial and lateral expansion, from their early evolution in the Sun’s atmosphere as observed in EUV imagers and coronagraphs. The data covers 72 CMEs that occurred in the time range of July 2010 to September 2012, where the twin STEREO spacecraft where in quasiquadrature </strong><strong>to the Sun-Earth line. From the STEREO point-of-view, the CMEs under study were observed close to the limb. We calculated the radial and lateral height (width) versus time profiles and derived the corresponding peak and mean velocities, accelerations, and angular expansion rates, with particular emphasis on the role of potential lateral overexpansion in the early CME evolution. We find high correlations between the radial and lateral CME velocities and accelerations. CMEs that are associated tend to be located at the high-value end of the distributions of velocities, widths, and expansion rates compared to nonSEP associated events.<br></strong></p>


Sign in / Sign up

Export Citation Format

Share Document