Nickel(II) complexes bound to an [Fe4S4] cluster via bridging thiolates:synthesis and crystal structure of model compounds for the active site of nickel CO dehydrogenase

1996 ◽  
pp. 777 ◽  
Author(s):  
Frank Osterloh ◽  
Wolfgang Saak ◽  
Detlev Haase ◽  
Siegfried Pohl
Author(s):  
Suryakanti Debata ◽  
Smruti R. Sahoo ◽  
Rudranarayan Khatua ◽  
Sridhar Sahu

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.


2013 ◽  
Vol 52 (22) ◽  
pp. 13014-13020 ◽  
Author(s):  
Yasunori Okamoto ◽  
Akira Onoda ◽  
Hiroshi Sugimoto ◽  
Yu Takano ◽  
Shun Hirota ◽  
...  

2014 ◽  
Vol 289 (28) ◽  
pp. 19810-19822 ◽  
Author(s):  
Fabian Kurth ◽  
Wilko Duprez ◽  
Lakshmanane Premkumar ◽  
Mark A. Schembri ◽  
David P. Fairlie ◽  
...  

2013 ◽  
Vol 12 (08) ◽  
pp. 1341002 ◽  
Author(s):  
XIN ZHANG ◽  
MING LEI

The deamination process of isoxanthopterin catalyzed by isoxanthopterin deaminase was determined using the combined QM(PM3)/MM molecular dynamics simulations. In this paper, the updated PM3 parameters were employed for zinc ions and the initial model was built up based on the crystal structure. Proton transfer and following steps have been investigated in two paths: Asp336 and His285 serve as the proton shuttle, respectively. Our simulations showed that His285 is more effective than Aap336 in proton transfer for deamination of isoxanthopterin. As hydrogen bonds between the substrate and surrounding residues play a key role in nucleophilic attack, we suggested mutating Thr195 to glutamic acid, which could enhance the hydrogen bonds and help isoxanthopterin get close to the active site. The simulations which change the substrate to pterin 6-carboxylate also performed for comparison. Our results provide reference for understanding of the mechanism of deaminase and for enhancing the deamination rate of isoxanthopterin deaminase.


Author(s):  
Tony Christopeit ◽  
Ke-Wu Yang ◽  
Shao-Kang Yang ◽  
Hanna-Kirsti S. Leiros

The increasing number of pathogens expressing metallo-β-lactamases (MBLs), and in this way achieving resistance to β-lactam antibiotics, is a significant threat to global public health. A promising strategy to treat such resistant pathogens is the co-administration of MBL inhibitors together with β-lactam antibiotics. However, an MBL inhibitor suitable for clinical use has not yet been identified. Verona integron-encoded metallo-β-lactamase 2 (VIM-2) is a widespread MBL with a broad substrate spectrum and hence is an interesting drug target for the treatment of β-lactam-resistant infections. In this study, three triazolylthioacetamides were tested as inhibitors of VIM-2. One of the tested compounds showed clear inhibition of VIM-2, with an IC50of 20 µM. The crystal structure of the inhibitor in complex with VIM-2 was obtained by DMSO-free co-crystallization and was solved at a resolution of 1.50 Å. To our knowledge, this is the first structure of a triazolylthioacetamide inhibitor in complex with an MBL. Analysis of the structure shows that the inhibitor binds to the two zinc ions in the active site of VIM-2 and revealed detailed information on the interactions involved. Furthermore, the crystal structure showed that binding of the inhibitor induced a conformational change of the conserved residue Trp87.


Sign in / Sign up

Export Citation Format

Share Document