Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method

CrystEngComm ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 1657-1662
Author(s):  
Na Zhang ◽  
Yuqing Yin ◽  
Jian Zhang ◽  
Tao Wang ◽  
Siyuan Wang ◽  
...  

Lu2O3 crystals have attracted intense attention due to their great potential in the field of high power solid-state lasers.

2011 ◽  
Vol 317 (1) ◽  
pp. 4-7 ◽  
Author(s):  
S.L. Baldochi ◽  
F.R. Silva ◽  
J.R. de Moraes ◽  
J. Jakutis ◽  
N.U. Wetter ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 78
Author(s):  
Anye Wang ◽  
Jian Zhang ◽  
Shuai Ye ◽  
Xiaofei Ma ◽  
Baiyi Wu ◽  
...  

Single-crystal fibers (SCFs) have a great application potential in high-power lasers due to their excellent performance. In this work, high-quality and crack-free Yb3+:Lu3Al5O12 (Yb:LuAG) SCFs were successfully fabricated by the micro-pulling-down (μ-PD) technology. Based on the laser micrometer and the X-ray Laue diffraction results, these Yb:LuAG SCFs have a less than 5% diameter fluctuation and good crystallinity along the axial direction. More importantly, the distribution of Yb ions is proved to be uniform by electron probe microanalysis (EPMA) and the scanning electron microscope (SEM). In the laser experiment, the continuous-wave (CW) output power using a 1 mm diameter Yb:LuAG single-crystal fiber is determined to be 1.96 W, at the central wavelength of 1047 nm, corresponding to a slope efficiency of 13.55%. Meanwhile, by applying a 3 mm diameter Yb:LuAG SCF, we obtain a 4.7 W CW laser output at 1049 nm with the slope efficiency of 22.17%. The beam quality factor M2 is less than 1.1 in both conditions, indicating a good optical quality of the grown fiber. Our results show that the Yb:LuAG SCF is a potential solid-state laser gain medium for 1 μm high-power lasers.


2013 ◽  
Vol 41 (9) ◽  
pp. 679
Author(s):  
Robert VAN LEEUWEN ◽  
Tong CHEN ◽  
Laurence WATKINS ◽  
Jean-Francois SEURIN ◽  
Chuni GHOSH

Sign in / Sign up

Export Citation Format

Share Document