slope efficiency
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 40)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 149 ◽  
pp. 107818
Author(s):  
Tárcio de Almeida Vieira ◽  
Felipe Maia Prado ◽  
Niklaus Ursus Wetter

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015001
Author(s):  
Majid Babaiy Tooski ◽  
Abbas Maleki ◽  
Abdolah Eslami Majd ◽  
Hassan Ebadian

Abstract In this paper, a Tm:fiber laser pumped Ho:YLF laser is simulated. The absorption efficiency, optimum crystal length, and optical resonator are analytically studied and simulated using LASCAD software, and the atomic-level degeneracies are considered in evaluating the absorption efficiency. In this way, the absorption efficiencies of 65% and 87% are obtained for single-pass 30 mm Ho:YLF crystal with doping concentration 0.5% and 1% respectively. These calculated efficiencies are verified by our experimental measurements and they coincide with acceptable errors. To estimate a proper length for the Ho:YLF crystal with specified doping concentration, the up-conversion, and the reabsorption effects are considered. As a result, we find the 30 mm length crystal is suited for reducing the absorption threshold and prohibiting reabsorption while saturation is controlled. The threshold power and slope efficiency for 65 W pumped powers are calculated by LASCAD software, and the thermal lens focal length of −665 mm is obtained. For a nearly constant beam width inside the cavity and suitable beam overlap efficiency, a concave-concave configuration is chosen for the optical resonator. In the continuous-wave operation, the output power is funded to be 38.4 W and the slope efficiency would be 66%.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 532
Author(s):  
Xin Tian ◽  
Chenhui Gao ◽  
Chongwei Wang ◽  
Xiaofan Zhao ◽  
Meng Wang ◽  
...  

We report a high power, narrow linewidth fiber laser based on oscillator one-stage power amplification configuration. A fiber oscillator with a center wavelength of 1080 nm is used as the seed, which is based on a high reflection fiber Bragg grating (FBG) and an output coupling FBG of narrow reflection bandwidth. The amplifier stage adopted counter pumping. By optimizing the seed and amplifier properties, an output laser power of 2276 W was obtained with a slope efficiency of 80.3%, a 3 dB linewidth of 0.54 nm and a signal to Raman ratio of 32 dB, however, the transverse mode instability (TMI) began to occur. For further increasing the laser power, a high-power chirped and tilted FBG (CTFBG) was inserted between the backward combiner and the output passive fiber, experimental results showed that both the threshold of Stimulated Raman scattering (SRS) and TMI increased. The maximum laser power was improved to 2576 W with a signal to Raman ratio of 42 dB, a slope efficiency of 77.1%, and a 3 dB linewidth of 0.87 nm. No TMI was observed and the beam quality factor M2 maintained about 1.6. This work could provide a useful reference for obtaining narrow-linewidth high-power fiber lasers with high signal to Raman ratio.


Author(s):  
Tomoya Okazaki ◽  
Chiaki Otsuka ◽  
Edson Haruhico Sekiya ◽  
Kota Kawai ◽  
Masato Mizusaki ◽  
...  

Abstract We present the first demonstration of visible laser oscillation in the Dy3+-doped silica fiber pumped by a 451nm InGaN laser diode. It was found that Ge-co-doping plays the following important roles of laser oscillation: (1) to reduce the Rayleigh scattering loss, (2) to suppress the X-ray-induced and pump-induced photodarkening (PD), and (3) to increase lasing slope efficiency. In a fiber with 0.46wt% Dy, 1.8 wt% Ge, and 0.54wt% Al, the slope efficiency is 22.0 % at 582.5 nm, and the maximum output power is 18.4 mW.


2021 ◽  
Vol 12 (2) ◽  
pp. 91-97
Author(s):  
K. N. Gorbachenya ◽  
V. E. Kisel ◽  
A. S. Yasukevich ◽  
E. V. Koporulina ◽  
E. A. Volkova ◽  
...  

Solid-state lasers emitting in the 1.5–1.6 μm spectral range are very promising for eye-safe laser range finding, ophthalmology, fiber-optic communication systems, and optical location. The aim of this work is the investigation of spectrosposcopic and laser properties of gain medium based on borate crystal for abovementioned lasers.Spectroscopic and laser properties of Er,Yb:YAl3(BO3)4 crystals with different concentrations of dopants were investigated. Polarized absorption and emission cross-section spectra were determined. The ytterbium- erbium energy transfer efficiency was estimated. The maximal energy transfer efficiency up to 97 % was obtained for Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal.The laser operation of heavily doped crystals with erbium concentration up to 4 аt.% (2.2^1020 cm^3) was realized. By using of Er(2 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal continuous- wave (CW) output power of 1.6 W was obtained at 1522 nm with slope efficiency of 32 %. By using of Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal peak output power up to 2.2 W with slope efficiency of 40 % was realized in quasi-continuous-wave regime of operation. The spatial profile of the output beam was close to TEM00 mode with M2 < 1.2 during all laser experiments.Based on the obtained results, it can be concluded that Er,Yb:YAl3(BO3)4 crystals are promising active media for lasers emitting in the spectral range of 1.5-1.6 pm for the usage in laser rangefinder and laser- induced breakdown spectroscopy systems, and LIDARs.


2021 ◽  
Vol 865 ◽  
pp. 158170
Author(s):  
Haotian Gan ◽  
Kelun Xia ◽  
Yiming Gui ◽  
Xusheng Zhang ◽  
Na Zeng ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 189
Author(s):  
Zi-Xian Yang ◽  
Chia-Yu Kuo ◽  
Gray Lin

Photonic-crystal surface-emitting lasers (PC-SELs), with and without regrowth, are theoretically simplified as air-hole and air-pillar structures, respectively. In this paper, square-latticed air-hole and air-pillar PC-SELs are simulated by a three-dimensional coupled-wave theory model and the design guideline is illustrated with a PC basis of a right isosceles triangular and double circular shapes. The optimum PC filling factor is determined by infinite PC cavity analysis and the slope efficiency of finite-size PC-SEL is then calculated for the lowest threshold band-edge mode. In comparison with air-hole PC-SEL, air-pillar PC-SEL exhibits lower threshold gain, larger gain discrimination but lower slope efficiency. To achieve slope efficiency of comparable value, the cavity area of air-pillar PC-SEL is about four times larger than that of air-hole PC-SEL.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 595
Author(s):  
Chao Niu ◽  
Yan Jiang ◽  
Ya Wen ◽  
Lu Zhao ◽  
Xinyu Chen ◽  
...  

A Tm:YAP laser with an output wavelength of 1989 nm was selected for the first time as the pump source of a Q-switched Ho:YAP laser. When the absorbed power was 30 W, an average power of 18.02 W with the pulse width of 104.2 ns acousto-optic (AO) Q-switched Ho:YAP laser was obtained at a repetition frequency of 10 kHz. The slope efficiency was 70.11%, and the optical-optical conversion efficiency was 43.03%. The output center wavelength was 2129.22 nm with the line width of 0.74 nm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1324
Author(s):  
Yury M. Shulga ◽  
Eugene N. Kabachkov ◽  
Vitaly I. Korepanov ◽  
Igor I. Khodos ◽  
Dmitry Y. Kovalev ◽  
...  

Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into the spasing operation region (NF-c*-type). It was shown that in the case of a moderate dye concentration, the nanorod has more advantages: smaller lasing threshold and larger slope efficiency and larger achieved intensities in the near-field in addition to FF-c-type systems’ smaller gain and outflow threshold, earlier dip-to-peak switching in the spectrum and slightly larger far-field outcoupling efficiency. However, the near-field (far-field) bandwidth is smaller for NF-c-type (FF-c-type) core–shell nanoresonators. In the case of a larger dye concentration (NF-c*-type), although the slope efficiency and near-field intensity remain larger for the nanorod, the core–shell nanoresonator is more advantageous, considering the smaller lasing, outflow, absorption and extinction cross-section thresholds and near-field bandwidth as well as the significantly larger internal and external quantum efficiencies. It was also shown that the strong-coupling of time-competing plasmonic modes accompanies the transition from lasing to spasing occurring, when the extinction cross-section crosses zero. As a result of the most efficient enhancement in the forward direction, the most uniform far-field distribution was achieved.


Sign in / Sign up

Export Citation Format

Share Document