Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances

2020 ◽  
Vol 49 (24) ◽  
pp. 9154-9196
Author(s):  
Jian Wang ◽  
Yang Gao ◽  
Hui Kong ◽  
Juwon Kim ◽  
Subin Choi ◽  
...  

Advances of non-precious-metal catalysts for alkaline water electrolysis are reviewed, highlighting operando techniques and theoretical calculations in their development.

ChemNanoMat ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 336-355 ◽  
Author(s):  
Daojin Zhou ◽  
Pengsong Li ◽  
Wenwen Xu ◽  
Sana Jawaid ◽  
Jamesh Mohammed‐Ibrahim ◽  
...  

2020 ◽  
Vol MA2020-02 (38) ◽  
pp. 2436-2436
Author(s):  
Sankar Sasidharan ◽  
Roby Soni ◽  
Hidenori Kuroki ◽  
Shoji Miyanishi ◽  
Anilkumar Gopinathan M ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Linsheng Wang

Green hydrogen production from the electrolysis of water has good application prospect due to its renewability. The applied voltage of 1.6-2.2V isrequired in the traditional actual water electrolysis process although the the oretical decomposition potential of electrolyzing water is 1.23V. The high overpotential in the electrode reaction results in the high energy-consuming for the water electrolysis processes. The overpotentials of the traditional Ru, Ir and Pt based electrocatalysts are respectively 0.3V, 0.4V and 0.5V, furthermore use of the Pt, Ir and Ru precious metal catalysts also result in high cost of the water electrolysis process. For minimizing the overpoten tials in water electrolysis, a novel super-alloy nanowire electrocatalysts have been discovered and developed for water splitting in the present pa per. It is of significance that the overpotential for the water electrolysis on the super-alloy nanowire electrocatalyst is almost zero. The actual voltage required in the electrolysis process is reduced to 1.3V by using the novel electrocatalyst system with zero overpotential. The utilization of the super-alloy nanowire type electrocatalyst instead of the traditional Pt, Ir and Ru precious metal catalysts is the solution to reduce energy consumption and capital cost in water electrolysis to generate hydrogen and oxygen.


Synthesis ◽  
2020 ◽  
Author(s):  
Hsien-Cheng Yu ◽  
Neal P Mankad

Heterobinuclear catalysts capable of bimetallic cooperative bond activation provide an alternative pathway to approach discovery of novel and unique reactivity and selectivity in catalytic transformations, complementing more traditional mononuclear precious metal catalysts. This review summarizes recent advances in homogenous catalysis using heterobimetallic carbonyl catalysts with polar metal-metal interactions.


2018 ◽  
Vol 1 (2) ◽  
pp. 9-14
Author(s):  
Marisol Cervantes-Bobadilla ◽  
Ricardo Fabricio Escobar Jiménez ◽  
José Francisco Gómez Aguilar ◽  
Tomas Emmanuel Higareda Pliego ◽  
Alberto Armando Alvares Gallegos

In this research, an alkaline water electrolysis process is modelled. The electrochemical electrolysis is carried out in an electrolyzer composed of 12 series-connected steel cells with a solution 30% wt of potassium hydroxide. The electrolysis process model was developed using a nonlinear identification technique based on the Hammerstein structure. This structure consists of a nonlinear static block and a linear dynamic block. In this work, the nonlinear static function is modelled by a polynomial approximation equation, and the linear dynamic is modelled using the ARX structure. To control the current feed to the electrolyzer an unconstraint predictive controller was implemented, once the unconstrained MPC was simulated, some restrictions are proposed to design a constrained MPC (CMPC). The CMPC aim is to reduce the electrolyzer's energy consumption (power supply current). Simulation results showed the advantages of using the CMPC since the energy (current) overshoots are avoided.


2021 ◽  
Vol 119 (1) ◽  
pp. 013901
Author(s):  
Qinpeng Zhu ◽  
Peihua Yang ◽  
Tao Zhang ◽  
Zehua Yu ◽  
Kang Liu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3193
Author(s):  
Ana L. Santos ◽  
Maria-João Cebola ◽  
Diogo M. F. Santos

Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis. This process is far from being new, but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better electrolyzer efficiency is through the optimization of the cell components and operating conditions. Following a brief introduction to the thermodynamics and kinetics of water electrolysis, the most recent developments on several parameters (e.g., electrocatalysts, electrolyte composition, separator, interelectrode distance) are highlighted.


2020 ◽  
Vol 1683 ◽  
pp. 052011
Author(s):  
V N Kuleshov ◽  
S V Kurochkin ◽  
N V Kuleshov ◽  
D V Blinov ◽  
O Y Grigorieva

2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document