scholarly journals Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3193
Author(s):  
Ana L. Santos ◽  
Maria-João Cebola ◽  
Diogo M. F. Santos

Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis. This process is far from being new, but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better electrolyzer efficiency is through the optimization of the cell components and operating conditions. Following a brief introduction to the thermodynamics and kinetics of water electrolysis, the most recent developments on several parameters (e.g., electrocatalysts, electrolyte composition, separator, interelectrode distance) are highlighted.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1336 ◽  
Author(s):  
Alejandro N. Colli ◽  
Hubert H. Girault ◽  
Alberto Battistel

Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities, and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel, and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 °C, which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 °C, which ran for one month at 300 mA cm−2. Finally, the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 °C and 1 A cm−2.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1634
Author(s):  
Jesús Rodríguez ◽  
Ernesto Amores

Although alkaline water electrolysis (AWE) is the most widespread technology for hydrogen production by electrolysis, its electrochemical and fluid dynamic optimization has rarely been addressed simultaneously using Computational Fluid Dynamics (CFD) simulation. In this regard, a two-dimensional (2D) CFD model of an AWE cell has been developed using COMSOL® software and then experimentally validated. The model involves transport equations for both liquid and gas phases as well as equations for the electric current conservation. This multiphysics approach allows the model to simultaneously analyze the fluid dynamic and electrochemical phenomena involved in an electrolysis cell. The electrical response was evaluated in terms of polarization curve (voltage vs. current density) at different operating conditions: temperature, electrolyte conductivity, and electrode-diaphragm distance. For all cases, the model fits very well with the experimental data with an error of less than 1% for the polarization curves. Moreover, the model successfully simulates the changes on gas profiles along the cell, according to current density, electrolyte flow rate, and electrode-diaphragm distance. The combination of electrochemical and fluid dynamics studies provides comprehensive information and makes the model a promising tool for electrolysis cell design.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3394 ◽  
Author(s):  
Damien Le Bideau ◽  
Philippe Mandin ◽  
Mohamed Benbouzid ◽  
Myeongsub Kim ◽  
Mathieu Sellier ◽  
...  

Hydrogen storage is a promising technology for storage of renewable energy resources. Despite its high energy density potential, the development of hydrogen storage has been impeded, mainly due to its significant cost. Although its cost is governed mainly by electrical energy expense, especially for hydrogen produced with alkaline water electrolysis, it is also driven by the value of the cell tension. The most common means of electrolyzer improvement is the use of an electrocatalyst, which reduces the energy required for electrochemical reaction to take place. Another efficient means of electrolyzer improvement is to use the Computational Fluid Dynamics (CFD)-assisted design that allows the comprehension of the phenomena occurring in the electrolyzer and also the improvement in the electrolyzer’s efficiency. The designed two-phase hydrodynamics model of this study has been compared with the experimental results of velocity profiles measured using Laser Doppler Velocimetry (LDV) method. The simulated results were in good agreement with the experimental data in the literature. Under the good fit with experimental values, it is efficient to introduce a new physical bubble transfer phenomenon description called “bubble diffusion”.


2018 ◽  
Vol 1 (2) ◽  
pp. 9-14
Author(s):  
Marisol Cervantes-Bobadilla ◽  
Ricardo Fabricio Escobar Jiménez ◽  
José Francisco Gómez Aguilar ◽  
Tomas Emmanuel Higareda Pliego ◽  
Alberto Armando Alvares Gallegos

In this research, an alkaline water electrolysis process is modelled. The electrochemical electrolysis is carried out in an electrolyzer composed of 12 series-connected steel cells with a solution 30% wt of potassium hydroxide. The electrolysis process model was developed using a nonlinear identification technique based on the Hammerstein structure. This structure consists of a nonlinear static block and a linear dynamic block. In this work, the nonlinear static function is modelled by a polynomial approximation equation, and the linear dynamic is modelled using the ARX structure. To control the current feed to the electrolyzer an unconstraint predictive controller was implemented, once the unconstrained MPC was simulated, some restrictions are proposed to design a constrained MPC (CMPC). The CMPC aim is to reduce the electrolyzer's energy consumption (power supply current). Simulation results showed the advantages of using the CMPC since the energy (current) overshoots are avoided.


2021 ◽  
Vol 119 (1) ◽  
pp. 013901
Author(s):  
Qinpeng Zhu ◽  
Peihua Yang ◽  
Tao Zhang ◽  
Zehua Yu ◽  
Kang Liu ◽  
...  

2020 ◽  
Vol 1683 ◽  
pp. 052011
Author(s):  
V N Kuleshov ◽  
S V Kurochkin ◽  
N V Kuleshov ◽  
D V Blinov ◽  
O Y Grigorieva

Sign in / Sign up

Export Citation Format

Share Document