scholarly journals Plasmonic nanocatalysts for visible-NIR light induced hydrogen generation from storage materials

2021 ◽  
Author(s):  
Priyanka Verma ◽  
Kohsuke Mori ◽  
Yasutaka Kuwahara ◽  
Robert Raja ◽  
Hiromi Yamashita

Solar-to-chemical conversion processes, assisted by localized surface plasmon resonance (LSPR) is a fast-growing field of plasmonics, to efficiently utilize solar energy due to their unique catalytic and optical responses. Plasmonic...

2020 ◽  
Author(s):  
Nareg Ohannesian ◽  
Jingting Li ◽  
Ibrahim Misbah ◽  
Fusheng Zhao ◽  
Wei-Chuan Shih

AbstractDirected assembly and concentrating of micro- and nanoparticles via laser generated plasmonic microbubbles in a liquid environment is an emerging technology. For effective heating, visible light has been primarily employed in existing demonstrations. In this paper, we demonstrate a new plasmonic platform based on nanoporous gold disk (NPGD) array. Thanks to the highly tunable localized surface plasmon resonance of the NPGD array, microbubble of controlled size can be generated by near-infrared (NIR) light. Using NIR light provides several key advantages over visible light in less interference with standard microscopy and fluorescence imaging, preventing fluorescence photobleaching, less susceptible to absorption and scattering in turbid biological media, and much reduced photochemistry, phototoxicity and whatsoever. The large surface-to-volume ratio of NPGD further facilitates the heat transfer from these gold nanoheaters to the surroundings, achieving unprecedented low-power operation. While the microbubble is formed, the surrounding liquid circulates and direct microparticles randomly dispersed in the liquid to the bottom NPGD surface, yielding unique assemblies of microstructures. Such capability can also be employed in concentrating suspended colloidal nanoparticles at desirable sites and with preferred configuration, both enhancing the sensor performance. In addition to various micro- and nanoparticles, the plasmonic microbubbles are also shown to collect biological cells and nanovesicles. By using a spatial light modulator (SLM) to project the laser in arbitrary patterns, parallel assembly can be achieved to fabricate an array of clusters. These assemblies have been characterized using optical microscopy, scanning electron microscope, hyperspectral localized surface plasmon resonance imaging and hyperspectral Raman imaging.


2021 ◽  
pp. 2100653
Author(s):  
Gyeong‐Su Park ◽  
Kyung Suk Min ◽  
Hyuksang Kwon ◽  
Sangwoon Yoon ◽  
Sangwon Park ◽  
...  

Plasmonics ◽  
2021 ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Fahim Yasir ◽  
Md. Rakib Hossain Antor ◽  
Mahmudul Hassan Turja ◽  
Ashikur Rahman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohei Shimanoe ◽  
Soshi Endo ◽  
Tetsuya Matsuyama ◽  
Kenji Wada ◽  
Koichi Okamoto

AbstractLocalized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure. NHoM is a structure in which a metal nanohemisphere is formed on a metal substrate that is interposed with an Al2O3 thin film layer. In the experimental validation, Al and Ga were used for the metal hemispheres. The LSPR spectrum of the NHoM structures was split into two peaks, and the peak intensities were enhanced and sharpened. The shorter branch of the LSPR peak appeared in the UVC region below 200 nm. Both the peak intensities and linewidth were flexibly tuned by the spacer thickness. This structure can contribute to new developments in the field of deep UV plasmonics.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


Sign in / Sign up

Export Citation Format

Share Document