scholarly journals Tight-binding investigation of the structural and vibrational properties of graphene–single wall carbon nanotube junctions

2021 ◽  
Author(s):  
Juhi Srivastava ◽  
Anshu Gaur

The phonon mode frequencies of SWNT and SLG in hybrid nanostructures are sensitive to various interactions, such as vdW forces, structural deformation and/or charge transfer between SWNT and SLG.

2020 ◽  
Author(s):  
Juhi Srivastava ◽  
Anshu Gaur

Hybrid carbon nanostructures based on single walled carbon nanotubes (SWNT) and single layer graphene (SLG) are drawing much attention lately for their applications in a range of efficient hybrid devices. Few recent studies, addressing the interaction behavior at the heterojunction, consider charge transfer between the constituents (SWNT and SLG) to be responsible for changes in the electronic and vibrational properties in their hybrid system. We report the effect of various factors, arising due to the interactions between atoms of SWNT and SLG, on the structural and vibrational roperties of hybrid nanostructures investigated computationally within the framework of tight-binding DFT. These factors such as the van der Waal’s (vdW) forces, structural deformation and the charge transfer, are seen to affect the Raman active phonon frequencies of SWNT and SLG in the hybrid nanostructure. These factors are already known to affect the vibrational properties on SWNT and SLG separately and in this work, we have explored their role and interplay between these factors in hybrid systems. The contribution of different factors to the total shift observed in phonon frequencies are estimated and it is perceived from our findings that not only the charge transfer but the structural deformations and the vdW forces also affect the vibrational properties of components within the hybrid, with structural deformation being the leading factor. With decreasing separation between SWNT and SLG, the charge transfer and the vdW forces, both increase. However, the increase in vdW forces is relatively much higher and likely to be the main cause for larger Raman shifts observed at smaller separations.


2020 ◽  
Author(s):  
Juhi Srivastava ◽  
Anshu Gaur

Hybrid carbon nanostructures based on single walled carbon nanotubes (SWNT) and single layer graphene (SLG) are drawing much attention lately for their applications in a range of efficient hybrid devices. Few recent studies, addressing the interaction behavior at the heterojunction, consider charge transfer between the constituents (SWNT and SLG) to be responsible for changes in the electronic and vibrational properties in their hybrid system. We report the effect of various factors, arising due to the interactions between atoms of SWNT and SLG, on the structural and vibrational roperties of hybrid nanostructures investigated computationally within the framework of tight-binding DFT. These factors such as the van der Waal’s (vdW) forces, structural deformation and the charge transfer, are seen to affect the Raman active phonon frequencies of SWNT and SLG in the hybrid nanostructure. These factors are already known to affect the vibrational properties on SWNT and SLG separately and in this work, we have explored their role and interplay between these factors in hybrid systems. The contribution of different factors to the total shift observed in phonon frequencies are estimated and it is perceived from our findings that not only the charge transfer but the structural deformations and the vdW forces also affect the vibrational properties of components within the hybrid, with structural deformation being the leading factor. With decreasing separation between SWNT and SLG, the charge transfer and the vdW forces, both increase. However, the increase in vdW forces is relatively much higher and likely to be the main cause for larger Raman shifts observed at smaller separations.


2004 ◽  
Vol 855 ◽  
Author(s):  
S. Gupta ◽  
M. Hughes ◽  
J. Robertson

ABSTRACTElectrochemical tuning of single-wall carbon nanotubes has been investigated using in situ Raman spectroscopy. We built a linear actuator from single-wall carbon nanotube mat and studied in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide solutions. The variation of bonding with electrochemical biasing was monitored using in situ Raman. This is since Raman can detect changes in C-C bond length: the radial breathing mode (RBM) at ∼190 cm−1 varies inversely with the nanotube diameter and the G band at ∼1590 cm−1 varies with the axial bond length. In addition, the intensities of both the modes vary significantly in a nonmonotonic manner pointing at the emptying/depleting or filling of the bonding and anti-bonding states - electrochemical charge injection. We discuss the variation of spectroscopic observables (intensity/frequency) of these modes providing valuable information on the charge transfer dynamics on the single-wall carbon nanotubes mat surface. We found the in-plane compressive strain (∼ -0.25%) and the charge transfer per carbon atom (fc ∼ -0.005) as an upper bound for the electrolytes used i.e. CaCl2. These results can be quantitatively understood in terms of the changes in the energy gaps between the one-dimensional van Hove singularities in the electron density of states arising possibly due to the alterations in the overlap integral of π bonds between the p orbitals of the adjacent carbon atoms. Moreover, the extent of variation of the absolute potential of the Fermi level or alternatively modification of band gap is estimated from modeling Raman intensity to be around 0.1 eV as an upper bound for CaCl2.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jaqueline S. Soares ◽  
Ado Jorio

Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.


Sign in / Sign up

Export Citation Format

Share Document