Regioselective benzoylation of unprotected β-glycopyranosides with benzoyl cyanide and an amine catalyst – application to saponin synthesis

Author(s):  
Tianlu Li ◽  
Tong Li ◽  
Yajing Sun ◽  
Yue Yang ◽  
Panpan Lv ◽  
...  

Regioselective protection of trans-trans triol and tetrol moieties in carbohydrates was achieved with BzCN as the benzoylating agent and amine catalysts. The protocols are useful for the chemical synthesis of oligosaccharides and saponins.

ACS Catalysis ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11406-11416 ◽  
Author(s):  
Tianlu Li ◽  
Tong Li ◽  
Michael Linseis ◽  
Fengshan Wang ◽  
Rainer F. Winter ◽  
...  

Author(s):  
Sidney W. Fox ◽  
Kaoru Harada ◽  
Gottfried Krampitz ◽  
Tadao Hayakawa ◽  
Charles Ray Windsor
Keyword(s):  

2012 ◽  
Vol 2 (2) ◽  
pp. 147-149
Author(s):  
Tanaji Dnyanadev Padalkar ◽  
Keyword(s):  

2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Sign in / Sign up

Export Citation Format

Share Document