scholarly journals Co/Ni-polyoxotungstate photocatalysts as precursor materials for electrocatalytic water oxidation

RSC Advances ◽  
2021 ◽  
Vol 11 (19) ◽  
pp. 11425-11436
Author(s):  
Robin Güttinger ◽  
Giann Wiprächtiger ◽  
Olivier Blacque ◽  
Greta R. Patzke

Open-core polyoxometalates are powerful precursors with pre-organized metal centers for the tunable synthesis of cobalt tungstate-based water oxidation electrocatalysts.

RSC Advances ◽  
2012 ◽  
Vol 2 (29) ◽  
pp. 10874 ◽  
Author(s):  
Hongfei Jia ◽  
Jason Stark ◽  
Li Qin Zhou ◽  
Chen Ling ◽  
Takeshi Sekito ◽  
...  

2020 ◽  
Vol 49 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Fusheng Li ◽  
Ziqi Zhao ◽  
Hao Yang ◽  
Dinghua Zhou ◽  
Yilong Zhao ◽  
...  

A cobalt oxide catalyst prepared by a flame-assisted deposition method on the surface of FTO and hematite for electrochemical and photoelectrochemical water oxidation, respectively.


2021 ◽  
Author(s):  
Daniyal Kiani ◽  
Sagar Sourav ◽  
Yadan Tang ◽  
Jonas Baltrusaitis ◽  
Israel E. Wachs

The literature on methane dehydroaromatization (MDA) to benzene using ZSM-5 supported, group V–VIII transition metal-based catalysts (MOx/ZSM-5) is critically reviewed with a focus on in situ and operando molecular insights.


2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


2020 ◽  
Author(s):  
Camilo A. Mesa ◽  
Ludmilla Steier ◽  
Benjamin Moss ◽  
Laia Francàs ◽  
James E. Thorne ◽  
...  

<p><i>Operando</i> spectroelectrochemical analysis is used to determine the water oxidation reaction kinetics for hematite photoanodes prepared using four different synthetic procedures. Whilst these photoanodes exhibit very different current / voltage performance, their underlying water oxidation kinetics are found to be almost invariant. Lower photoanode performance was found to correlate with the observation of optical signals indicative of charge accumulation in mid-gap oxygen vacancy states, indicating these states do not contribute directly to water oxidation.</p>


Sign in / Sign up

Export Citation Format

Share Document