Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage

2020 ◽  
Vol 4 (9) ◽  
pp. 4547-4557
Author(s):  
Runfeng Li ◽  
Yang Zhou ◽  
Xili Duan

A nanoparticle-paraffin-tailing ceramic composite phase change material is developed with good chemical and physical stability and enhanced heat transfer properties.

2020 ◽  
Vol 206 ◽  
pp. 110280 ◽  
Author(s):  
Nan Sheng ◽  
Ruijie Zhu ◽  
Takahiro Nomura ◽  
Zhonghao Rao ◽  
Chunyu Zhu ◽  
...  

2012 ◽  
Vol 48 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Abdelwaheb Trigui ◽  
Mustapha Karkri ◽  
Chokri Boudaya ◽  
Yves Candau ◽  
Laurent Ibos ◽  
...  

Author(s):  
Yuanpeng Yao ◽  
Huiying Wu

Abstract In this work, a macroscale model for melting phase change of metal foam/paraffin composite phase change material (MFPC) is developed by employing the enthalpy-porosity method and volume averaging technique. Both cases of varied and unvaried paraffin density during phase change are investigated in the model, and diffusion dominated interstitial heat exchange between paraffin and metal foam is considered along with the convection dominated interstitial heat transfer. The visualization experiments on melting phase change of copper foam/paraffin composite are carried out to validate the developed phase change model. It is found that with consideration of varied density of paraffin, the developed model can effectively solve the real melting problem of MFPC when metal foam is initially filled with solid paraffin. If the Boussinesq approximation is employed (i.e., unvaried paraffin density is considered during phase change), the model is more appropriate for the phase change problem on condition that metal foam can just be filled with liquid paraffin in the end of the melting process. Hence according to different treatments of paraffin density, the application of the phase change model needs to consider the influence of real paraffin filling condition of MFPC. The phase change model considering diffusion dominated interstitial heat transfer between stationary paraffin and metal foam can more accurately capture the solid-liquid phase interface positions as compared with the model only considering the convection dominated interstitial heat transfer. The present study can provide guidance for physically more reasonable simulation of the practical phase change problem of MFPC.


2019 ◽  
Vol 116 ◽  
pp. 00038 ◽  
Author(s):  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
George Dogkas ◽  
Christos Pagkalos ◽  
Kostas Lymperis ◽  
...  

A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications.


Sign in / Sign up

Export Citation Format

Share Document